
TM

Reference Manual
HiQ Reference Manual

April 1998 Edition
Part Number 321885A-01

Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1993, 1998 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
ActiveMath™, HiQ™, HiQ-Script™, LabVIEW™, LabWindows™/CVI, and natinst.com™ are trademarks of National
Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v HiQ Reference Manual

Contents

About This Manual
Organization of This Manual ...xix
Conventions Used in This Manual...xx
Related Documentation..xxi
Customer Communication ...xxi

Chapter 1
ActiveX Connectivity

ActiveX Technology..1-1
HiQ Is an ActiveX Document Container...1-1
HiQ Is an ActiveX Document Server ..1-1
HiQ Is an ActiveX Automation Client ..1-2
HiQ Is an ActiveX Automation Server ...1-2
HiQ Is an ActiveX Controls Container ...1-2

Communicating with ActiveX Servers, Objects, and Controls1-3
Displaying the HiQ ActiveX Object Browser ...1-3
Using the HiQ ActiveX Object Browser ...1-5

Embedding Objects from Other Applications in HiQ ...1-8
Programmatically Modifying An Embedded Microsoft Word Document........1-10

Embedding HiQ Notebooks in Other Applications ...1-11
Controlling Other Applications from HiQ...1-12

Launching and Controlling Microsoft Excel from HiQ1-12
Controlling HiQ from Other Applications...1-13

Application Object...1-13
Application Object Properties...1-14

CurrentDirectory...1-14
Visible...1-14

Application Object Methods ...1-14
Exit..1-14
Open..1-15

Notebook Object..1-15
Notebook Object Properties ..1-16

LastError ...1-16
Notebook Object Methods ..1-16

Close ...1-16
GetData ...1-17
PrintOut ..1-17
RunScript ..1-18
Save ..1-18

Contents

HiQ Reference Manual vi © National Instruments Corporation

SetComplexData... 1-19
Set Data .. 1-20
SetScript ... 1-21

Automation Errors ... 1-22
Using ActiveX Controls in HiQ .. 1-23

Chapter 2
HiQ Command Window

Customizing the Command Window .. 2-1
Attached/Detached Mode.. 2-1
Terse/Verbose Mode ... 2-2
Syntax Highlighting and Font Options ... 2-2
Object Views... 2-2
History... 2-3

Recalling Commands from an Empty Command Line 2-3
Recalling Commands with a Match String... 2-4

HiQ/MATLAB Mode ... 2-4
Command Window Shortcuts.. 2-4

Optional Trailing Semicolon... 2-4
Default Object Assignment ... 2-5
Multiple Statements and Block Statement Support .. 2-5

Terminating Commands .. 2-5
Command Window Commands .. 2-6
MATLAB Mode Commands... 2-8
HiQ Log Window.. 2-8

Chapter 3
Using HiQ Graphics

Two-Dimensional Graphs ... 3-1
Two-Dimensional Graph Features .. 3-1
Creating a 2D Graph ... 3-2
Adding a Plot to an Existing 2D Graph .. 3-2
Creating 2D Plot Objects .. 3-3
Changing the Data of a 2D Plot .. 3-4
Creating a Graph and Plot Simultaneously ... 3-5
Adding Multiple Y Axes to a 2D Graph ... 3-5

Three-Dimensional Graphs ... 3-6
Three-Dimensional Graph Features .. 3-6
Creating a 3D Graph ... 3-6
Adding a Plot to an Existing 3D Graph .. 3-7
Creating 3D Plot Objects .. 3-9
Changing the Data of a 3D Plot .. 3-9

Contents

© National Instruments Corporation vii HiQ Reference Manual

Creating a Graph and Plot Simultaneously ...3-11
Creating 4D Plots ..3-11
Interacting with 3D Graphs ...3-12
Using Lights ..3-12
Using Accelerated OpenGL Graphics Adapters..3-12

Common Graph Operations ...3-13
Setting Graph Properties..3-13

Plot Properties ...3-17
Contour Properties ..3-22
Axis Properties..3-24
Light Properties...3-29

Querying Graph Properties..3-31
Using Auto Scaling..3-31
Using Legends ...3-31
Removing Plots ...3-32

Chapter 4
HiQ Objects and Object Properties

HiQ Objects ...4-1
Object Creation..4-1
Object Views ...4-2

Creating Views..4-2
Deleting Views..4-2

Object Properties ...4-3
Default Property Settings ..4-3
Changing Properties..4-3

HiQ Object Descriptions..4-4
Numeric Scalar Objects ...4-4
Numeric Vector Objects ..4-8
Numeric Matrix Objects ..4-14
Numeric Polynomial Objects ..4-21
Text Objects...4-25
Script Objects ..4-26
Color Objects...4-28
Font Objects...4-29
Function Objects..4-30
ActiveX Objects ..4-31
ActiveX Control Objects ...4-32
ActiveX Interface Objects ...4-33
HiQ Constant Objects..4-34
Untyped Objects ..4-35

Contents

HiQ Reference Manual viii © National Instruments Corporation

Graph Objects ... 4-36
Plot Objects ... 4-45

Chapter 5
HiQ-Script Basics

HiQ-Script ... 5-2
Naming Conventions ... 5-3
Script Objects .. 5-3

Compiling Your Script.. 5-4
Running Your Script ... 5-5
Syntax Highlighting .. 5-6

Comments.. 5-6
Expressions.. 5-6
Assignment Statements ... 5-7
Numeric Objects .. 5-8

Creating Numeric Objects... 5-8
Initializer Syntax ... 5-9
Subscripts .. 5-9
Subranges .. 5-10
Polynomial Objects ... 5-10
Type Conversion ... 5-11
Numeric Constants .. 5-12

User Functions...5-12
Writing a Function .. 5-12
Calling a Function ... 5-13
Structure of a Function.. 5-13
Return Statement... 5-13
User Function Initialization Syntax .. 5-14

Object Scope.. 5-15
Flow Control and Looping .. 5-16

If-Then-Else Statement ... 5-16
Conditional Expressions ... 5-17
Select Statement .. 5-18
For Loop.. 5-18
While Loop ... 5-19

Chapter 6
HiQ-Script Reference

Algebraic Expression... 6-1
Algebraic Binary Operators... 6-3
Algebraic Unary Operators.. 6-12
Assignment .. 6-14

Contents

© National Instruments Corporation ix HiQ Reference Manual

assume..6-16
Color Initialization Operator..6-17
Complex Literal ...6-18
Constant ...6-19
exit ...6-20
Font Initialization Operator ...6-21
for ...6-22
function ..6-23
Function Call..6-25
Function Initialization Operator...6-26
if ...6-28
Integer Literal ..6-30
local..6-31
Logical Expression ..6-32
Logical Binary Operators...6-33
Logical Unary Operators ...6-34
Matrix Initialization Operator ..6-35
next...6-36
Polynomial Initialization Operator ..6-37
Precedence ...6-38
project ..6-39
Property Operator ..6-40
Real Literal ..6-41
Relational Operators ..6-42
repeat..6-44
repeat forever ...6-45
return ..6-46
select ..6-47
Subrange Operator ...6-48
Text Literal ..6-51
Vector Initialization Operator ..6-52
while...6-53

Chapter 7
Function Reference

abs ..7-1
addPlot ...7-2
airy ...7-5
arccos ...7-7
arccosh ...7-9
arccot..7-11
arccoth..7-13

Contents

HiQ Reference Manual x © National Instruments Corporation

arccsc ... 7-15
arccsch ... 7-17
arcsec ... 7-19
arcsech ... 7-21
arcsin.. 7-23
arcsinh.. 7-25
arctan ... 7-27
arctanh ... 7-29
arg .. 7-31
avgDev... 7-32
bandwidth .. 7-33
basis ... 7-35
besselI .. 7-37
besselJ.. 7-38
besselJs .. 7-39
besselK .. 7-40
besselY .. 7-41
besselYs... 7-42
beta .. 7-43
cbrt ... 7-44
CDF ... 7-46
ceil ... 7-49
changePlotData.. 7-51
choleskyD .. 7-53
clearLog... 7-55
close... 7-56
compose... 7-57
cond ... 7-58
conj .. 7-59
convert ... 7-61
cor .. 7-65
cos.. 7-66
cosh.. 7-67
coshI .. 7-69
cosI .. 7-70
cot .. 7-71
coth .. 7-72
cov ... 7-73
createGraph.. 7-74
createInterface ... 7-77
createMatrix... 7-78
createPlot ... 7-83
createPoly .. 7-85

Contents

© National Instruments Corporation xi HiQ Reference Manual

createVector ...7-90
createView ...7-92
cross ...7-93
csc ..7-94
csch ..7-95
curl ...7-96
date...7-98
dawson ...7-99
degree...7-100
deleteFile..7-101
derivative ...7-102
det...7-105
diag...7-106
digamma...7-107
diln ...7-108
dim ...7-109
dist..7-111
div ..7-113
divide ...7-114
dot ..7-115
eigen...7-116
eigenDom...7-119
eigenSel..7-121
elliptic1 ..7-123
elliptic2 ..7-124
ellipticJ...7-125
erf ...7-126
erfc ...7-127
error..7-128
eval...7-129
evalPoly ...7-131
exp..7-136
expI ..7-137
export ...7-138
fact ...7-144
fCosI...7-145
fill ...7-146
find ...7-147
fit ..7-151
fitEval...7-156
floor..7-158
flush ...7-160
fPart..7-161

Contents

HiQ Reference Manual xii © National Instruments Corporation

fSinI ... 7-162
gamma ... 7-163
gammaC... 7-165
gauss .. 7-166
gcd ... 7-167
getFileName ..7-169
getFilePos .. 7-171
getFileSize ... 7-172
getNumber ... 7-173
getText... 7-174
givens... 7-175
gradient .. 7-177
guder .. 7-179
guderInv... 7-180
hessenbergD ..7-181
hessian ... 7-183
histogram ... 7-185
householder.. 7-186
ident ... 7-188
import .. 7-189
integEqn... 7-194
integrate ... 7-198
interp.. 7-201
interpEval .. 7-204
inv .. 7-206
iPart.. 7-208
isEOF... 7-209
isMatrix.. 7-210
jacobian.. 7-213
kelvinI.. 7-215
kelvinK .. 7-216
kummer.. 7-217
kurtosis .. 7-218
laplacian... 7-219
lcm ... 7-220
ln .. 7-221
log .. 7-222
logMessage.. 7-223
LUD... 7-224
max .. 7-226
mean .. 7-227
median ... 7-228
message.. 7-229

Contents

© National Instruments Corporation xiii HiQ Reference Manual

min ...7-230
moment ..7-231
norm ...7-232
ODEBVP ...7-235
ODEIVP...7-240
ones ..7-244
open..7-245
optimize ...7-247
partial ...7-254
PDF ..7-256
permu ...7-259
pinv ..7-261
pow...7-263
prod ..7-264
putFileName...7-265
QRD...7-266
quartile ...7-268
random ...7-269
range...7-271
rank ..7-272
read...7-273
readLine ...7-274
reflect ...7-275
remove ...7-276
removePlot ...7-278
renameFile ...7-279
replace..7-280
root ...7-283
roots ...7-285
rotate ..7-287
round ..7-289
saveLog ..7-290
schurD ..7-291
sec ..7-293
sech ..7-294
seed ..7-295
seq ..7-296
setFilePos ...7-298
sign...7-299
sin...7-300
sinh...7-301
sinhI ...7-304
sinI ...7-305

Contents

HiQ Reference Manual xiv © National Instruments Corporation

skew... 7-306
solve... 7-307
sort ... 7-314
sparsity... 7-318
spline.. 7-319
splineEval .. 7-321
sqrt ... 7-322
stdDev.. 7-323
stirling.. 7-324
struve ... 7-325
subrange... 7-326
sum .. 7-328
SV .. 7-329
SVD ... 7-331
symD.. 7-333
tan .. 7-335
tanh .. 7-336
time.. 7-337
timer... 7-338
toComplex ... 7-339
toInteger... 7-340
toMatrix ... 7-341
toNumeric .. 7-342
toReal... 7-347
toScalar .. 7-348
toText... 7-349
toVector ... 7-355
trace ... 7-356
trans ... 7-357
tricomi.. 7-358
updateViews ..7-359
vanish... 7-360
var .. 7-361
wait .. 7-362
warning .. 7-363
weber ... 7-364
write ... 7-365
writeLine.. 7-366
zeta... 7-367

Contents

© National Instruments Corporation xv HiQ Reference Manual

Appendix A
HiQ Functions Listed by Category

Appendix B
HiQ Constants

Appendix C
Customer Communication

Glossary

Index

Figures
Figure 1-1. HiQ ActiveX Object Browser ...1-4
Figure 1-2. ActiveX Library References..1-5
Figure 1-3. Microsoft Excel 8.0 Object Library ..1-6
Figure 1-4. Microsoft Word Document Embedded in a HiQ Notebook....................1-9

Figure 2-1. Command Window Properties ..2-3

Figure 5-1. Active Script Object on the Notebook Page..5-4
Figure 5-2. Select Objects»View»All to View Function Objects5-5

Tables
Table 1-1. Automation Errors ..1-22

Table 2-1. Command Window Commands ...2-6
Table 2-2. MATLAB Mode Commands...2-8

Table 3-1. Advantages and Disadvantages of Using 3D Hardware Acceleration3-13
Table 3-2. Graph Properties ...3-14
Table 3-3. Plot Properties ..3-17
Table 3-4. Contour Properties...3-23
Table 3-5. Examples: Setting Plot Properties ...3-24
Table 3-6. Valid Values for axisType...3-25
Table 3-7. Axis Properties ...3-26
Table 3-8. Examples: Setting Axis Properties ..3-29

Contents

HiQ Reference Manual xvi © National Instruments Corporation

Table 3-9. Light Properties... 3-30
Table 3-10. Examples: Setting Light Properties .. 3-30

Table 4-1. Numeric Scalar Object Properties .. 4-4
Table 4-2. Numeric Vector Object Properties ... 4-9
Table 4-3. Numeric Matrix Object Properties ... 4-15
Table 4-4. Numeric Polynomial Properties ... 4-21
Table 4-5. Text Object Properties ... 4-25
Table 4-6. Script Object Properties ... 4-26
Table 4-7. Color Object Properties .. 4-28
Table 4-8. Font Object Properties ... 4-29
Table 4-9. Function Object Properties ... 4-30
Table 4-10. ActiveX Object Properties .. 4-31
Table 4-11. ActiveX Control Object Properties... 4-32
Table 4-12. ActiveX Interface Object Properties ... 4-33
Table 4-13. HiQ Constant Object Properties.. 4-34
Table 4-14. Untyped Object Properties .. 4-35
Table 4-15. Graph Object Properties ... 4-36
Table 4-16. Axis Properties ... 4-41
Table 4-17. Graph Light Properties.. 4-44
Table 4-18. Plot Object Properties .. 4-45
Table 4-19. Plot Contour Properties... 4-51

Table A-1. Analysis Functions ... A-1
Table A-2. File I/O Functions .. A-11
Table A-3. Graphics Functions .. A-12
Table A-4. Utility Functions .. A-12

Table B-1. Object Type Constants ... B-1
Table B-2. Border Style Constants ... B-2
Table B-3. Plot Style Constants .. B-3
Table B-4. Fill Style Constants ... B-3
Table B-5. Line Style Constants ... B-4
Table B-6. Point Style Constants .. B-4
Table B-7. Coordinate System Constants .. B-5
Table B-8. Axis Scaling Constants ... B-5
Table B-9. Contour Constants... B-5
Table B-10. Projection Style Constants .. B-5
Table B-11. View Mode Constants... B-6
Table B-12. Lighting Attenuation Constants .. B-6
Table B-13. Color Map Constants .. B-6
Table B-14. Line Interpolation Constants... B-7
Table B-15. Numeric Formatting Constants .. B-7

Contents

© National Instruments Corporation xvii HiQ Reference Manual

Table B-16. Numeric Constants ..B-8
Table B-17. Text Constants...B-9
Table B-18. Color Constants ..B-10
Table B-19. Function Constants ...B-11

© National Instruments Corporation xix HiQ Reference Manual

About This Manual

The HiQ Reference Manual contains reference information about different
HiQ features, including ActiveX automation, the Command Window,
graphics, HiQ objects, HiQ-Script reference, and built-in HiQ functions.

If you are new to HiQ, read Getting Results with HiQ, an introductory
manual designed to teach you HiQ basics.

Organization of This Manual
The HiQ Reference Manual is organized as follows:

• Chapter 1, ActiveX Connectivity, describes ActiveX connectivity and
how you can use that technology in HiQ to communicate with other
applications, embed objects from other applications in HiQ, embed
HiQ Notebooks in other applications, control other applications from
HiQ, control HiQ from other applications, and use ActiveX controls
in HiQ.

• Chapter 2, HiQ Command Window, explains how you can customize
the HiQ Command Window, take advantage of Command Window
shortcuts, and navigate the Command Window using custom
commands for both HiQ and MATLAB modes. This chapter
concludes with a description of the HiQ Log Window.

• Chapter 3, Using HiQ Graphics, provides information about using 2D
and 3D graphics in HiQ and procedures for working with graphs
interactively and programmatically.

• Chapter 4, HiQ Objects and Object Properties, explains HiQ objects
in general, describes each HiQ object specifically, and provides all
properties and property descriptions for each object.

• Chapter 5, HiQ-Script Basics, introduces HiQ-Script, the built-in
scripting language that you can use to build algorithms you need to
solve your problems.

• Chapter 6, HiQ-Script Reference, contains an alphabetical reference of
HiQ-Script elements, including expressions and statements.

• Chapter 7, Function Reference, contains an alphabetical list and
description of every HiQ built-in function.

• Appendix A, HiQ Functions Listed by Category, lists all HiQ built-in
functions by category: Analysis, File I/O, Graphics, and Utilities. The
analysis functions are divided into subcategories: approximation, basic

About This Manual

HiQ Reference Manual xx © National Instruments Corporation

math, derivatives, differential equations, integral equations,
integration, linear algebra, nonlinear systems, optimization,
polynomials, special functions, statistics, structures, trigonometric,
and utility functions.

• Appendix B, HiQ Constants, lists and describes the HiQ property
constants, HiQ-Script language constants, and built-in function
constants.

• Appendix C, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

Conventions Used in This Manual
The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard—for example,
<shift>. In HiQ-Script, angle brackets denote a HiQ-Script constant.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence Help»HiQ Help Topics directs you to pull
down the Help menu and select the HiQ Help Topics item. This symbol
also represents the MATLAB prompt.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

bold Bold text denotes the names of menus, menu items, dialog box buttons or
options, icons, and windows.

bold italic Bold italic text denotes a note.

<Control> Key names are capitalized.

italic Italic text denotes a cross reference or an introduction to a key concept.

About This Manual

© National Instruments Corporation xxi HiQ Reference Manual

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, parameters, functions, variables, filenames and extensions, and
for statements and comments taken from programs.

monospace italic Italic text in this font denotes optional parameters or indicates that you must
enter the appropriate words or values in the place of these items.

paths Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Related Documentation
The following documents contain information you might find helpful as
you read this manual:

• Getting Results with HiQ

• The HiQ online help, which you can access with the
Help»HiQ Help Topics command.

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendix C, Customer
Communication, at the end of this manual.

© National Instruments Corporation 1-1 HiQ Reference Manual

1
ActiveX Connectivity

This chapter describes ActiveX connectivity and how you can use that
technology in HiQ to communicate with other applications, embed
objects from other applications in HiQ, embed HiQ Notebooks in other
applications, control other applications from HiQ, control HiQ from other
applications, and use ActiveX controls in HiQ.

ActiveX Technology
ActiveX is a Microsoft standard technology that allows programs to
communicate with each other and share data. ActiveX technology
encompasses five major areas: document containers, document servers,
automation clients, automation servers, and controls containers. Because
HiQ supports all five areas of ActiveX technology, you have maximum
flexibility in sharing HiQ with your other software tools.

HiQ Is an ActiveX Document Container
As an ActiveX document container, HiQ allows you to embed documents
and objects from other applications directly into your HiQ Notebook.
For example, you can embed a Microsoft Word file, an Excel spreadsheet,
or a PowerPoint presentation directly in your HiQ Notebook. These
embedded objects are editable within the HiQ environment and can be
stored within a HiQ Notebook or linked to an external file on disk. For more
information about embedding objects in HiQ, see Embedding Objects from
Other Applications in HiQ later in this chapter.

HiQ Is an ActiveX Document Server
As an ActiveX document server, HiQ allows you to embed a HiQ
Notebook into any other application that is an ActiveX document
container. For example, you can embed a HiQ Notebook directly into a
Microsoft Word document, an Excel spreadsheet, or a PowerPoint
presentation. The embedded HiQ Notebook is editable within the other
application and can be stored within the container document. For more
information about embedding a HiQ Notebook in another application, see
Embedding HiQ Notebooks in Other Applications later in this chapter.

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-2 © National Instruments Corporation

HiQ Is an ActiveX Automation Client
As an ActiveX automation client, HiQ allows you to run and control other
applications from the HiQ environment. For example, you can create a HiQ
Notebook that automatically launches Microsoft Word or Excel and then
shares HiQ data with the Word document or Excel spreadsheet to produce
an automated report. For more information about controlling another
application from HiQ, see Controlling Other Applications from HiQ later
in this chapter.

HiQ Is an ActiveX Automation Server
As an ActiveX automation server, HiQ allows you to run and control a HiQ
Notebook from within any other application that is an ActiveX automation
client. For example, you can create a program in another application,
such as Microsoft Visual Basic, LabVIEW, or LabWindows/CVI, that
automatically launches HiQ, opens a HiQ Notebook, and sends data to HiQ
for automated analysis, visualization, and report generation. For more
information about controlling a HiQ Notebook from another application,
see Controlling HiQ from Other Applications later in this chapter.

HiQ Is an ActiveX Controls Container
As an ActiveX controls container, HiQ allows you to embed ActiveX
controls directly into your HiQ Notebook. These embedded controls can be
accessed both interactively and programmatically from within the HiQ
environment. For example, you can embed a Microsoft Web Browser or
National Instruments ComponentWorks control directly into your HiQ
Notebook and then access that control to automatically gather data from the
Internet or a physical measurement device. You then can store that data in
your HiQ Notebook for analysis. For more information about embedding
an ActiveX control in a HiQ Notebook, see Using ActiveX Controls in HiQ
later in this chapter.

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-3 HiQ Reference Manual

Communicating with ActiveX Servers, Objects,
and Controls

You can connect HiQ to other applications (ActiveX servers), share data
with embedded documents (ActiveX objects), and operate embedded
controls (ActiveX controls). By displaying the methods and properties
available to these servers, objects, and controls, the HiQ ActiveX Object
Browser makes it easy to communicate with other ActiveX components.

The HiQ ActiveX Object Browser is a browser window that lets you view
all the interfaces for ActiveX servers, objects, and controls installed on your
computer. From these interfaces, you can access the properties and methods
from HiQ-Script to manipulate the other ActiveX component.

Displaying the HiQ ActiveX Object Browser
You can invoke the HiQ ActiveX Object Browser in one of three ways
from the HiQ environment:

• Select ActiveX Object Browser from the View menu.

• Right click on an embedded object or control, and select Browse.

• Use the browse command in the HiQ Command Window. For more
information about the browse command, see Command Window
Commands in Chapter 2, The HiQ Command Window.

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-4 © National Instruments Corporation

Figure 1-1. HiQ ActiveX Object Browser

The HiQ ActiveX Object Browser, as shown in Figure 1-1, appears at the
top of the HiQ window by default.

The HiQ ActiveX Object Browser consists of four windows:

• The top pulldown window is a selection list that allows you to choose
which ActiveX server, object, or control you want to browse.

• The left window displays the ActiveX interfaces to the currently
selected ActiveX server, object, or control.

• The right window displays all the properties and methods for the
currently selected ActiveX interface.

• The bottom window displays the syntax help for the currently selected
property or method. This help text is provided by the selected ActiveX
component.

There are two buttons on the HiQ ActiveX Object Browser:

• References—This button brings up the References dialog box where
you choose which of the currently installed ActiveX servers, objects,
and controls on your computer are to be displayed in the ActiveX
Object Browser selection list.

• Help—This button brings up the online help for the currently selected
item in the ActiveX Object Browser.

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-5 HiQ Reference Manual

Note Not all ActiveX servers, objects, and controls have online help. As a result, help
might not be available for some items.

Using the HiQ ActiveX Object Browser
The HiQ ActiveX Object Browser (Figure 1-1) displays ActiveX interfaces
to servers, objects, and controls in the left window. Methods and properties
for these interfaces are displayed in the right window.

Use the following procedure to browse the ActiveX interface to Microsoft
Excel. You can use this procedure to browse other applications as well.

Note You need Microsoft Excel 97 installed on your computer to complete this example.

1. Invoke the ActiveX Object Browser.

2. Click on References to display a list of all available ActiveX servers,
objects, and controls in the ActiveX Library References dialog box.
From this dialog, you can select which servers, objects, and controls
appear in the ActiveX Object Browser list.

3. Select Microsoft Excel Object Library from the selection list, and click
on OK .

Figure 1-2. ActiveX Library References

In the left window of the ActiveX Object Browser, the available
interfaces for Microsoft Excel are now listed.

4. Click on the Application interface in the left widow. Notice that the
properties and methods for the Application interface are immediately
displayed in the right window of the ActiveX Object Browser.

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-6 © National Instruments Corporation

5. Click on the ActiveCell property in the right window. Notice the syntax
help for the ActiveCell property is immediately displayed in the
window below.

Figure 1-3. Microsoft Excel 8.0 Object Library

Note To view the syntax help for a particular property or method of an ActiveX
interface, select the interface from the left window of the ActiveX Object Browser.
Then, select the appropriate property or method from the right window. The syntax
help for that item is displayed in the bottom window of the ActiveX Object Browser.

6. To access some of the properties and methods of Excel, enter the
following commands in the HiQ Command Window.

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-7 HiQ Reference Manual

Note You can use the HiQ ActiveX Object Browser to verify the syntax of the following
commands. Click on the Help button to view the online help for a selected item.

excel = CreateInterface("excel.application");

excel.visible = true;

excel.workbooks.add;

sheet = excel.activesheet;

sheet.range("A1:C3") = CreateMatrix(3, 3, <random>);

v = sheet.range("B1:B3").value;

In this example, excel is an ActiveX interface to the Excel automation
server application created by the CreateInterface function call, and
sheet is an ActiveX interface to the currently active Excel sheet. You use
an ActiveX interface in HiQ-Script to access the properties and methods of
an ActiveX object. Once you have a sheet interface, you can modify the
sheet using its properties and methods.

For more information about the createInterface function, see
createInterface, in Chapter 7, Function Reference.

In the above example, you are setting the range of Excel cells A1 to C3 to
random numbers that are generated from HiQ. You then read the Excel
sheet to create a vector in HiQ containing the values from cells B1 to B3.

This example shows how you can use the HiQ ActiveX Object Browser to
view the ActiveX interfaces for various application servers, objects, and
controls. Using this information, you can easily communicate with other
software tools by sending and receiving data from HiQ.

For more information about controlling other applications from HiQ, see
Controlling Other Applications from HiQ later in this chapter.

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-8 © National Instruments Corporation

Embedding Objects from Other Applications in HiQ
You can embed objects from other applications directly in a HiQ Notebook,
which is especially useful when you want to annotate your HiQ Notebook
with pictures, charts, images, and text from other applications you already
own. Embedded objects are editable within the HiQ environment and can
be stored within the HiQ Notebook or linked to an external file on disk.

Use the following procedure to embed an object into a HiQ Notebook.

1. Select Insert Object from the Edit menu. A list box appears showing
you all of the currently registered object servers on your computer.

2. Choose the object from the list that you would like to embed in your
HiQ Notebook. For example, select Microsoft Word Document if you
want to include a Word document in your HiQ Notebook.

3. Click on Create New to create a new embedded object, or click on
Create from File to embed a file from disk.

Note When you select Create New, the newly created object is stored in the HiQ
Notebook. When you select Create from File, you can embed a copy of the entire
file or link to the file on disk. Choose the Link option if you want to link to the file
on disk. If you want the entire object embedded and saved, rather than linked, do
not choose the Link option.

You now have an embedded object in your HiQ Notebook. Notice that
the HiQ menu bar and HiQ toolbars change to reflect the merging of
HiQ with the embedded object’s application. Figure 1-4 shows an
example of a Microsoft Word document embedded and active in a HiQ
Notebook.

4. Edit the embedded object directly in HiQ with the natural tools
available to the embedded object.

When you finish editing the embedded object, click outside the object
somewhere on the Notebook page to terminate your editing. Notice
that the HiQ menu bars and toolbars return to their original state,
indicating that you are no longer editing the embedded object.

To edit the embedded object again, double click on the embedded
object view on the HiQ Notebook page. Notice that the HiQ menu bar
and toolbars change to merge with the embedded object’s application.

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-9 HiQ Reference Manual

Figure 1-4. Microsoft Word Document Embedded in a HiQ Notebook

After embedding an object in a HiQ Notebook, you can manipulate it in one
of two ways:

• Interactively edit an embedded object directly on the HiQ Notebook
page by double clicking on it.

• Programmatically control an embedded object with HiQ-Script, which
gives you the power to access the properties and methods for
embedded objects. For example, you can programmatically change the
text within an embedded Microsoft Word document in HiQ, as
described in the following example.

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-10 © National Instruments Corporation

Programmatically Modifying An Embedded Microsoft Word Document
With the following steps, you can programmatically modify an embedded
Microsoft Word object within a HiQ Notebook.

Note You need Microsoft Word 97 or greater installed on your computer to complete
this example.

1. In a new HiQ Notebook, select Insert Object from the Edit menu.

2. Choose Microsoft Word Document from the Object Type list, and
click on OK to embed the Microsoft Word Document in your HiQ
Notebook. The default name of the new embedded Word object is
ActiveXObject_1 .

3. Type text into the embedded Word object, and then click outside the
new embedded Word object on the Notebook page to terminate editing.

4. Right click on the embedded Word object, select Rename, and rename
ActiveXObject_1 to myWordDoc.

5. Right click on the embedded Word object and select Browse to browse
all the properties and methods for this embedded object in the HiQ
ActiveX Object Browser. Notice that the Document interface is
highlighted in the left window of the ActiveX Object Browser,
indicating that the embedded object is a Microsoft Word Document
interface.

Note To browse the methods and properties available for embedded objects, use the
procedures described in Communicating with ActiveX Servers, Objects,
and Controls earlier in this chapter.

6. Click on the Application property in the right window of the ActiveX
Object Browser.

This property returns an Application interface to the Microsoft Word
application. You can learn more about the Application interface by
selecting it and then clicking on the Help button in the ActiveX Object
Browser.

7. Click on the Application interface in the left window of the ActiveX
Object Browser to view the properties and methods associated with the
Application interface. Scroll through the right window of the ActiveX
Object Browser to view the properties and methods available for the
Application interface. Select the Selection property and click on the
Help button. Notice that this property returns a Selection object.

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-11 HiQ Reference Manual

8. Click on the Selection interface in the left window of the ActiveX
Object Browser to view the properties and methods available for a
Selection object. Scroll through the right window of the ActiveX
Object Browser to view the properties and methods available for the
Selection object. Select the Text property and click on the Help button.
Notice that this property can be used to set the text within the
embedded ActiveX object.

After browsing the embedded Word object, you have determined which
methods and properties you need to access to modify the text.

9. From the HiQ Command Window, enter the following HiQ-Script
code to programmatically add text to the embedded Word object and
press <Enter>.

myWordDoc.application.selection.text=“Hello Word”;

You have programmatically modified the embedded Word object from the
HiQ environment. You can change an embedded object using any of the
available properties and methods for that object as shown in the HiQ
ActiveX Object Browser. In this case, most tasks you can do in Microsoft
Word, you also can control programmatically from within the HiQ
environment.

Embedding HiQ Notebooks in Other Applications
You can embed a HiQ Notebook in any application that is an ActiveX
document container, which is especially useful when you want to include a
HiQ Notebook as part of a document you are creating in another
application. The embedded HiQ Notebook is editable within the
environment of the container application and can be stored in the container
application.

Use the following procedure to embed a HiQ Notebook in another
application.

Note The application you are using must be an ActiveX container.

1. Select Insert Object in the container application. The exact command
name and location varies from application to application. For example,
in Microsoft Word, select Object... from the Insert menu.

In the Object dialog box, a list box displays all of the currently
registered ActiveX object servers on your machine.

2. To embed a new HiQ Notebook, select HiQ Notebook from the list of
currently registered ActiveX object servers. When you select Create

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-12 © National Instruments Corporation

New, the new Notebook is stored within the container application’s
document.

Note HiQ does not support the Create from File option when embedding a HiQ
Notebook into another application.

3. Edit the embedded HiQ Notebook. You can edit the Notebook at any
time by double clicking on it in the container application. Notice that
the embedded HiQ Notebook comes up in HiQ for you to edit.

4. When you finish editing the embedded HiQ Notebook, select Close
and Return... from the HiQ File menu. The changes to your HiQ
Notebook are automatically saved to the container application file.

Controlling Other Applications from HiQ
As an ActiveX automation client, HiQ allows you to run and control other
applications from within the HiQ environment. Using this technology, you
can create a HiQ Notebook that automatically launches another application
such as Microsoft Word, Microsoft Excel, or MATLAB. You can control
that application and share data to add automated analysis to your existing
applications.

This capability is available in HiQ via a new built-in function designed
specifically for supporting ActiveX client capability: CreateInterface .

Launching and Controlling Microsoft Excel from HiQ
The following HiQ-Script code launches Microsoft Excel, creates a new
Excel Worksheet, sets a range of cells, reads the numeric values of the
selected cells into a HiQ matrix, and finally graphs the data in a HiQ 3D
graph:

excel = CreateInterface(“Excel.Application”);

excel.workbooks.add;

sheet = excel.activesheet;

sheet.range(“a1:c3”) = createMatrix(3,3,<random>);

m = sheet.range(“a1:c3”).value;

g = createGraph(m);

createView(g);

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-13 HiQ Reference Manual

You can use the HiQ ActiveX Object Browser to view the Excel properties
and methods used in this example.

For more information about using these new functions to control other
applications from HiQ, see createInterface in Chapter 7, Function
Reference.

Controlling HiQ from Other Applications
As an ActiveX automation server, HiQ allows you to run and control a HiQ
Notebook from any application that is an ActiveX automation client. The
HiQ ActiveX automation interface enables applications such as Excel,
Word, Visual Basic, LabWindows/CVI, and LabVIEW to control HiQ for
advanced data visualization, analysis, and report generation. This interface
exposes a collection of class objects—the Application object and the
Notebook object—that contain methods and properties you can use to
directly manipulate HiQ.

The Application object represents an instance of HiQ, which you can use
to load notebooks and control various HiQ properties. Use the Notebook
object to set and get data; run scripts; and print, save, and close notebooks.

If you are using ActiveX-enabled scripting environments such as Excel and
Visual Basic, use the HiQ.olb type library file in the HiQ Programs
folder to browse the HiQ automation interface.

If you are using LabVIEW, use the VI library HiQ.llb , which is installed
in the vi.lib folder, to control HiQ. You can access the VI library from
the Communications functions palette. Refer to the LabVIEW
documentation and online reference for complete information about using
these VIs. You also can find a collection of example VIs in the LabVIEW
Examples\Comm\HiQ folder.

The descriptions of the following methods and properties include examples
of accessing them using Visual Basic for Applications (VBA).

Application Object
The Application object represents a currently executing instance of HiQ.

Use the Visual Basic function CreateObject to launch HiQ and return an
instance of an Application object. If HiQ is already running, use the Visual
Basic function GetObject to return an instance of an Application object.
The class name for the HiQ Application object is HiQ.Application .

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-14 © National Instruments Corporation

For example, the following Visual Basic code launches HiQ and makes it
visible.

Dim HiQApp as Object

Set HiQApp = CreateObject("HiQ.Application")

HiQApp.Visible = true

Application Object Properties
CurrentDirectory
Gets or sets the current directory for HiQ.

Application.CurrentDirectory As String

The following Visual Basic code launches HiQ, sets the current directory
to c:\Temp , and loads a Notebook from that directory.

Dim HiQApp as Object

Dim Notebook as Object

Set HiQApp = CreateObject("HiQ.Application")

HiQApp.CurrentDirectory = "c:\Temp"

Set Notebook = HiQApp.open("Automation.HiQ")

Visible
Shows or hides HiQ.

Application.Visible As Boolean

For example, the following Visual Basic code launches HiQ and makes it
visible.

Dim HiQApp as Object

Set HiQApp = CreateObject("HiQ.Application")

HiQApp.Visible = true

Application Object Methods
Exit
Exits the HiQ application.

Application.Exit()

For example, the following Visual Basic code launches HiQ, loads and
prints the Automation.HiQ Notebook, and exits HiQ.

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-15 HiQ Reference Manual

Dim HiQApp as Object

Dim Notebook as Object

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.PrintOut

HiQApp.Exit

Open
Opens a HiQ Notebook and returns an object representing the notebook.

Set oNotebook = Application.Open(NotebookName As String)

As Notebook

NotebookName is the name of the notebook to open. oNotebook is the
returned notebook object representing the open notebook.

For example, the following Visual Basic code launches HiQ and loads and
prints the Automation.HiQ Notebook.

Dim HiQApp as Object

Dim Notebook as Object

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.PrintOut

Notebook Object
The Notebook object represents an instance of an open HiQ Notebook.

Use the Open method of the Application object to open a HiQ Notebook
and return an instance of this Notebook object.

For example, the following Visual Basic code launches HiQ and loads and
prints the Automation.HiQ Notebook.

Dim HiQApp as Object

Dim Notebook as Object

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.PrintOut

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-16 © National Instruments Corporation

Notebook Object Properties
LastError
Gets the most recent HiQ ActiveX Automation error. This property is
read only. Table 1-1, Automation Errors, lists the HiQ automation errors.

Notebook.LastError As Long

For example, the following Visual Basic code launches HiQ, loads the
Automation.HiQ Notebook, and checks for an error.

Dim HiQApp as Object

Dim Notebook as Object

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

If Notebook.LastError <> HiQSuccess then

Msgbox "Error: " & Notebook.LastError

End If

Notebook Object Methods
Close
Closes a HiQ Notebook. Once closed, the Notebook object is no longer
valid.

Status = Notebook.Close() As Long

Status is the result of the operation. If Status is not equal to zero, an
error occurred. Refer to Table 1-1, Automation Errors, later in this chapter
for a list of HiQ automation errors.

For example, the following Visual Basic code launches HiQ, loads
and prints the Automation.HiQ Notebook, closes the Notebook, and
exits HiQ.

Dim HiQApp as Object

Dim Notebook as Object

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.PrintOut

Notebook.Close

HiQApp.Exit

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-17 HiQ Reference Manual

GetData
Gets an object’s data value.

Value = Notebook.GetData(ObjectName As String) as Variant

ObjectName is the name of the HiQ object to query, and Value is the
current value of the object.

Use the LastError property to determine the status of this operation.
If ObjectName is a complex scalar object, Value is returned as a
two-element 1D array with Value(0) containing the real part and
Value(1) containing the imaginary part of the complex number.
If ObjectName is a complex vector object, Value is returned as a
two-column 2D array with the first column containing the real part and
the second column containing the imaginary part of the complex vector.
If ObjectName is a complex matrix object, Value is returned as a 2D array
with twice the number of columns as the matrix object. The even numbered
columns (0, 2, 4, ...) contain the real parts, and the odd numbered columns
(1, 3, 5, ...) contain the imaginary parts of the complex matrix.

For example, the following Visual Basic code launches HiQ, loads the
Automation.HiQ Notebook, and gets the value of the matrix object
Answer .

Dim HiQApp as Object

Dim Notebook as Object

Dim Answer as Variant

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Answer = Notebook.GetData("Answer")

PrintOut
Prints a HiQ Notebook.

Status = Notebook.PrintOut(DisplaySetupDialog As Boolean

= False, DisplayCancelDialog As Boolean = True) As Long

DisplaySetupDialog specifies whether the print setup dialog is
displayed. DisplayCancelDialog specifies whether the print cancel
dialog is displayed. Status is the result of the operation. If Status is not
equal to zero, an error occurred. Refer to Table 1-1, Automation Errors,
later in this chapter for a list of HiQ automation errors.

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-18 © National Instruments Corporation

For example, the following Visual Basic code launches HiQ and loads and
prints the Automation.HiQ Notebook.

Dim HiQApp as Object

Dim Notebook as Object

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.PrintOut

RunScript
Runs a script.

Status = Notebook.RunScript(ScriptName As String)

As Long

ScriptName is the name of the script to execute, and Status is the result
of the operation. If Status is not equal to zero, an error occurred. Refer to
Table 1-1, Automation Errors, later in this chapter for a list of HiQ
automation errors.

For example, the following Visual Basic code launches HiQ, loads the
Automation.HiQ Notebook, sets the value of two vector objects, sets the
value of the script object newScript , runs the script, and saves the
notebook.

Dim HiQApp as Object

Dim Notebook as Object

Dim x(10) as Double

Dim y(10) as Double

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.SetData("x", x)

Notebook.SetData("y", y)

Notebook.SetScript("newScript",

"addPlot(myGraph,x,y);")

Notebook.RunScript("newScript")

Notebook.Save

Save
Saves a HiQ Notebook. If NotebookPath is omitted, the Notebook is
saved with the same name.

Status = Notebook.Save(NotebookPath As String = "")

As Long

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-19 HiQ Reference Manual

NotebookPath is the complete path name of the Notebook file to save.
Status is the result of the operation. If Status is not equal to zero, an
error occurred. Refer to Table 1-1, Automation Errors, later in this chapter
for a list of HiQ automation errors.

For example, the following Visual Basic code launches HiQ, loads the
Automation.HiQ Notebook, sets the value of a Matrix object, and saves
the notebook twice.

Dim HiQApp as Object

Dim Notebook as Object

Dim data(10,10) as Double

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.SetData("newMatrix", data)

Notebook.Save 'Save the Notebook in the same file.

Notebook.Save("Newfile.HiQ") 'Save to a new file.

SetComplexData
Sets a complex object’s data value.

Status = Notebook.SetComplexData(ObjectName As String,

RealValue as Variant, ImaginaryValue as Variant) As Long

ObjectName is the name of the HiQ object to modify. RealValue
contains the real values of the resulting complex object. ImaginaryValue
contains the imaginary values of the resulting complex object.

Status is the result of the operation. If Status is not equal to zero, an
error occurred. Refer to Table 1-1, Automation Errors, later in this chapter
for a list of HiQ automation errors.

If the specified object exists in HiQ but has a different data type, the object
is converted to complex. If the specified HiQ object does not currently exist
in the notebook, it is created based on the data type of Value according to
the following table.

Visual Basic Data Type HiQ Data Type

Double Complex Scalar

Double 1D Array Complex Vector

Double 2D Array Complex Matrix

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-20 © National Instruments Corporation

For example, the following Visual Basic code launches HiQ, loads the
Automation.HiQ Notebook, sets the value of the complex vector object
newVector , and saves the notebook.

Dim HiQApp as Object

Dim Notebook as Object

Dim realData(10) as Double

Dim imagData(10) as Double

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.SetComplexData("newMatrix", realData, imagData)

Notebook.Save

Set Data
Sets an object’s data value.

Status = Notebook.SetData(ObjectName As String,

Value As Variant) As Long

ObjectName is the name of the HiQ object to modify, Value is the
new value of the HiQ object, and Status is the result of the operation.
If Status is not equal to zero, an error occurred. Refer to Table 1-1,
Automation Errors, later in this chapter for a list of HiQ automation errors.

If the specified object exists in HiQ but has a different data type, the object
is converted to the data type of Value . If the specified HiQ object does not
currently exist in the notebook, it is created based on the data type of Value
according to the following table.

Visual Basic Data Type HiQ Data Type

Long Integer Scalar

Long 1D Array Integer Vector

Long 2D Array Integer Matrix

Double Real Scalar

Double 1D Array Real Vector

Double 2D Array Real Matrix

String Text

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-21 HiQ Reference Manual

For example, the following Visual Basic code launches HiQ, loads the
Automation.HiQ Notebook, sets the value of the real matrix object
newMatrix , and saves the notebook.

Dim HiQApp as Object

Dim Notebook as Object

Dim Data(10,10) as Double

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.SetData("newMatrix", Data)

Notebook.Save

SetScript
Sets the text of a script. If the Script object does not exist, this method
creates a new object.

Status = Notebook.SetScript(ScriptName As String,

ScriptText As String) As Long

ScriptName is the name of the script object to modify, ScriptText is the
text used to modify the script object, and Status is the result of the
operation. If Status is not equal to zero, an error occurred. Refer to
Automation Errors later in this chapter for more information.

For example, the following Visual Basic code launches HiQ, loads the
Automation.HiQ Notebook, sets the value of two vector objects, sets the
value of the script object newScript , runs the script, and saves the
notebook.

Dim HiQApp as Object

Dim Notebook as Object

Dim x(10) as Double

Dim y(10) as Double

Set HiQApp = CreateObject("HiQ.Application")

Set Notebook = HiQApp.Open("Automation.HiQ")

Notebook.SetData("x", x)

Notebook.SetData("y", y)

Notebook.SetScript("newScript", "addPlot(myGraph,x,y);")

Notebook.RunScript("newScript")

Notebook.Save

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-22 © National Instruments Corporation

Automation Errors
The following errors can be generated by the HiQ ActiveX automation
methods.

Table 1-1. Automation Errors

Error Code Description

HiQSuccess Successful operation. (No Error)

HiQObjectLocked Attempt to modify a HiQ object that is currently in use.

HiQObjectNonexistant Specified object does not exist in the HiQ Notebook.

HiQDataTypeLocked Specified HiQ object has its data type locked and cannot be
modified.

HiQDataTypeMismatch Data type of the specified HiQ object does not match the
requested data type.

HiQOperationUnsupported Specified HiQ object does not support the requested operation.
For example, you cannot set the value of a HiQ Graph object or
run a Matrix object.

HiQScriptCompileError Compile error was encountered while trying to run a script.

HiQScriptRuntimeError Runtime error was encountered while trying to run a script.

HiQArrayEmpty Attempt to pass an empty array to HiQ.

HiQOutOfMemory Insufficient memory for requested operation. Try closing open
applications to create more memory.

HiQUnspecifiedException Unspecified OLE or HiQ error occurred.

HiQInternalError Internal error has been detected. Please contact National
Instruments.

HiQSaveError Error occurred (such as out of disk space) while saving a
notebook.

HiQPrintError Error occurred during printing or the print job was canceled by
the user.

HiQDataTypeUnsupported Data type of a value passed to SetData or SetComplexData
is not supported.

Chapter 1 ActiveX Connectivity

© National Instruments Corporation 1-23 HiQ Reference Manual

Using ActiveX Controls in HiQ
You can embed ActiveX controls directly in your HiQ Notebook. You can
access these embedded controls both interactively and programmatically
from the HiQ environment. Use the following procedure to insert an
ActiveX control in a HiQ Notebook.

1. Select Insert Control from the Edit menu. The Insert Control dialog
box lists all of the available ActiveX controls currently installed on
your computer.

2. For this example, select the ActiveMovie Control Object and click on
OK . The ActiveMovie control object becomes embedded in the HiQ
Notebook.

3. Resize the control to make it larger on your Notebook page so you can
see the entire movie when it runs.

4. Right click on the embedded control and select Browse to browse the
list of available properties and methods for this control.

5. Click on the ActiveMovie interface in the left window, then click on
the FileName property in the right window. Notice that a description
for this property appears at the bottom of the ActiveX Object Browser,
telling us that the FileName property is a text property.

6. Now select the Run method in the right window of the ActiveX Object
Browser. Notice that this method is a function you can call for an
ActiveMovie interface and that it takes no parameters.

7. To programmatically control this ActiveX control from HiQ, type the
following HiQ-Script in the Command Window to load a movie into
this control and run it.

ActiveXControl_1.FileName =

"C:\Program Files\National Instruments\HiQ

\Examples\Data\Sample.mpg";

ActiveXControl_1.Run;

HiQArrayDimension
Mismatch

Real and imaginary array values passed to SetComplexData
have different dimensions.

HiQInvalidObjectName Specified object name is not a valid HiQ object name.

Table 1-1. Automation Errors (Continued)

Error Code Description

Chapter 1 ActiveX Connectivity

HiQ Reference Manual 1-24 © National Instruments Corporation

You also can operate this control interactively from the HiQ Notebook
page. To run the movie interactively, click on the run button within the
control.

© National Instruments Corporation 2-1 HiQ Reference Manual

2
HiQ Command Window

This chapter explains how you can customize the HiQ Command Window,
take advantage of Command Window shortcuts, and navigate the
Command Window using custom commands for both HiQ and MATLAB
modes. This chapter concludes with a description of the HiQ Log Window.

For more information about navigating the Command Window, getting
help from the Command Window, creating and modifying notebooks from
the Command Window, and getting immediate results using the Command
Window, see Chapter 3, Getting Results with the Command Window, in
Getting Results with HiQ.

Customizing the Command Window
You can customize the Command Window to fit your needs. Right click in
the Command Window to change most of these options.

Attached/Detached Mode
When you enter a command that creates an object, that object is always
placed in the Object List of the active notebook. To perform operations
without adding objects to the Object List of the current notebook, use the
detached mode. Detached mode places all new objects created from the
Command Window in its own Object List and makes accessible all current
objects in the Command Window Object List. You can find objects created
in detached mode in the Notebook Explorer, under the Command Window
entry.

To enter detached mode, type detach in the Command Window, or select
Detach from the right-click popup menu. To attach the Command Window
to the current notebook, type attach in the Command Window, or select
Attach from the right-click popup menu.

Chapter 2 HiQ Command Window

HiQ Reference Manual 2-2 © National Instruments Corporation

Terse/Verbose Mode
When you execute a command that changes the value of an object, the
Command Window displays the new value to you while in verbose mode.
In terse mode, the Command Window does not display results on the
command line.

To enter terse mode, type terse in the Command Window, or right click
on the Command Window and select Terse from the popup menu. To exit
terse mode, type verbose on the command line, or select Verbose from
the right-click popup menu.

In verbose mode, a semicolon at the end of a command optionally
suppresses the results for that command only. You can turn off this option
in the property page.

Syntax Highlighting and Font Options
Like Script objects, the command window performs syntax highlighting.
You can select your syntax highlighting font options from the Command
Window property pages (right click in the Command Window, select
Properties... from the popup menu, and click on the Fonts tab).

Object Views
With the Command Window, you can view the result of an expression
without having a view of the object on the notebook page. The Command
Window automatically displays the result of any object that you change
from the Command Window (if the Command Window is not in terse
mode). However, some objects do not have a text version or have an
extremely large text version, such as a very large matrix. To accommodate
these situations, the Command Window offers three options for viewing
objects.

• Show large or graphical objects in a window—A popup window is
created and a new view of the object is placed in the window. The
Command Window continues to display other objects in the Command
Window.

• Show all objects in a window—If you prefer having popup windows
display the new value of all objects, you can display all objects in
individual windows.

• Show no objects in a window—(Default) If the Command Window
cannot show the changed object on the command line, it does not show
you the object at all.

Chapter 2 HiQ Command Window

© National Instruments Corporation 2-3 HiQ Reference Manual

Figure 2-1, Command Window Properties, shows other properties that you
can customize, including the largest matrix and vector you want displayed
in the Command Window and formatting options for displaying numeric
objects.

Figure 2-1. Command Window Properties

History
The Command Window remembers the most recently executed commands
and stores them in a history list. You can specify the length of the history
list from the Command Window property page in the History Buffer Size
field (see Figure 2-1).

Recalling Commands from an Empty Command Line
When the current command line is empty, press the up arrow key to recall
the last command you executed. You can modify the command, if needed,
and execute it again. You can recall previous commands by continuing to
press the up arrow key. Press the down arrow key to cycle through the
commands in reverse order. If the current command has multiple lines, use
the arrow keys to move between the lines of the command. If you are at the
first line of a multiple command, the up arrow key recalls the previous

Chapter 2 HiQ Command Window

HiQ Reference Manual 2-4 © National Instruments Corporation

command. If you are at the last line of the current command, the down
arrow key recalls the next command. To move to another command when
not on the first or last line of a multiple command, hold down the <Ctrl>
key while using the arrow keys.

Recalling Commands with a Match String
If you type in text before pressing an arrow key, the text is used as a match
string. Only commands beginning with the text are shown. For example, if
you type x = and then press the up arrow key, you see only commands that
start with x =. HiQ preserves the command history for successive
invocations of HiQ.

HiQ/MATLAB Mode
When you first launch HiQ, the Command Window opens in the HiQ
mode. If you have MATLAB 5.0 or greater installed on your computer,
HiQ can communicate with MATLAB and you can transfer data between
the two when you enter MATLAB mode. To enter MATLAB mode, type
matlab at the prompt. To return to HiQ mode, type hiq at the prompt.

While in MATLAB mode, you can execute any valid MATLAB command.
You also can use the four HiQ data transfer commands: get , put , getAll ,
and putAll . For a complete description of these commands, see MATLAB
Mode Commands later in this chapter. For more information about using
MATLAB from the HiQ Command Window, see Chapter 9, Getting
Results as a MATLAB User, in Getting Results with HiQ.

Command Window Shortcuts
Because it is designed to give you quick results, the Command Window
offers several built-in shortcuts, such as the optional trailing semicolon,
default variable assignment, and multiple statements and block statement
support.

Optional Trailing Semicolon
Although HiQ-Script statements require trailing semicolons in the script
editor, you can omit the trailing semicolon of the last statement in the
Command Window. Rather than typing

x = 4;

you can type

x = 4

Chapter 2 HiQ Command Window

© National Instruments Corporation 2-5 HiQ Reference Manual

When the Command Window is in verbose mode, the trailing semicolon
optionally suppresses results if you select the Trailing semicolon implies
terse option from the Command Window property page.

Default Object Assignment
With default object assignment, the Command Window assigns the result
of an expression you type to the default object. If you type sin(1) , the
Command Window returns ans = 0.841471 .

Because the Command Window recognizes when you enter an expression
and not a complete assignment statement, it assigns the result of the
expression to the default object. In this case, the object ans is given the
result of the expression. You can change the name of the default object or
disable this feature from the Command Window property page.

Multiple Statements and Block Statement Support
The Command Window supports multiple statements and block
statements. In the following example, the Command Window executes both
statements and displays the new x and y values.

x = 4; y = sin(x);

You also can enter block statements, such as For and While loops, similar
to the following block of code.

for x = 1 to 20 do

v[x] = sin(x);

end for;

The Command Window does not execute the first line because it is an
incomplete statement. Instead, it waits until you type end for; , thus
completing the for statement, to execute the command.

Terminating Commands
The Command Window displays a spinning cursor to indicate that a
command is still executing. Most commands execute so quickly that HiQ
does not display this cursor.

If you want to terminate a command while it is executing, press the
<Esc> or <Ctrl-Break> keys or select Terminate from the right-click
popup menu.

Chapter 2 HiQ Command Window

HiQ Reference Manual 2-6 © National Instruments Corporation

Command Window Commands
The Command Window evaluates any valid HiQ-Script statement or
expression and special Command Window commands. Table 2-1 lists the
Command Window commands. You can type an object name at the
command line to display its value. For more information about HiQ-Script
syntax, refer to Chapter 6, HiQ-Script Reference.

Note If a Command Window command and an object share the same name and you type
the name at the command line, the object is displayed, and the command does not
execute. To execute the command in this situation, prefix the command with the
pound sign (#). For example, type #clear , instead of clear .

Table 2-1. Command Window Commands

Command Explanation

clear Clears the contents of the Command Window.

clearHistory Clears the contents of the history.

quit Quits HiQ, which is the same as selecting Exit from the File menu.

help keyword Displays the online help topic for the word you specify.

delete
object _name

Removes object _name from the Object List.

openNotebook name Opens the HiQ Notebook name.

whatChanged Lists all objects that changed as a result of executing the previous
command.

objects Lists the names of all objects in the Object List.

place object _name Places a view of object _name on the active page of the current
notebook.

Chapter 2 HiQ Command Window

© National Instruments Corporation 2-7 HiQ Reference Manual

terse Enters terse mode. Results are not echoed on the Command Window.

verbose Exits terse mode. Results are echoed on the Command Window.

detach Enters detached mode. Results are not placed or saved in any Notebook.

attach Attaches the Command Window to the currently active Notebook.
Subsequent objects created using the Command Window are placed in
the Object List.

whatis
object _name

Displays type information about object _name.

cd path Changes the current directory to path . path can be a relative pathname
or an absolute path name. path also can specify a network computer and
share name. If you do not specify path , the current directory is
displayed.

pwd Displays the current directory.

dir Lists the names of the files in the current directory.

ls Lists the names of the files in the current directory.

run file _name Runs the HiQ-Script contained in file _name. You can omit the .hqs
extension.

view object _name Places a view of object _name in an individual window.

browse
object_name

Displays the ActiveX information for object_name in the ActiveX
Object Browser. object_name must be an ActiveX object.

matlab Enters MATLAB mode.

Table 2-1. Command Window Commands (Continued)

Command Explanation

Chapter 2 HiQ Command Window

HiQ Reference Manual 2-8 © National Instruments Corporation

MATLAB Mode Commands
If you have MATLAB 5.0 or greater installed on you computer, you can
enter MATLAB mode by typing Matlab in the Command Window. The
Command Window enters MATLAB mode and displays the » prompt.
While you are in MATLAB mode, you can invoke any MATLAB file
command and call any MATLAB file you have. Results are displayed in
the Command Window in the familiar MATLAB manner. Table 2-2 lists
the additional commands available in MATLAB mode that you can use to
exchange data between HiQ and MATLAB.

To return to HiQ mode, type hiq in the Command Window. Although this
command returns you to HiQ mode, the MATLAB session is not
terminated. Type matlab to return to the same session. Type quit to quit
the MATLAB session and return to HiQ mode.

HiQ Log Window
Use the Log Window to post status messages from HiQ-Script. You can
access the Log Window through three built-in functions: clearLog ,
logMessage , and saveLog . clearLog clears the Log Window.
logMessage adds a message to the Log Window. saveLog saves the
contents of the Log Window to a file. Right click on the Log Window to
display the popup menu of operations you can perform interactively to the
Log Window.

For more information about these built-in functions, see Chapter 7,
Function Reference.

Table 2-2. MATLAB Mode Commands

Column Head Needed Column Head Needed

get MATLABname HiQname Gets the MATLAB object MATLABname, names it HiQname,
and places it in the current Object List. If HiQname is
omitted, MATLABname is used for the HiQname.

getAll Gets all MATLAB objects and places them in the current
Object List.

put HiQname MATLABname Sends the object HiQname to MATLAB and names it
MATLABname. If MATLABname is omitted, the object is named
HiQname.

putAll Sends all objects in the current Object List to MATLAB.

© National Instruments Corporation 3-1 HiQ Reference Manual

3
Using HiQ Graphics

This chapter provides information about using 2D and 3D graphics in HiQ
and procedures for working with graphs interactively and
programmatically.

You can further explore graphics capabilities in the following sources:

• Chapter 5, Visualizing Data with 2D and 3D Graphs,
in Getting Results with HiQ

• Chapter 4, HiQ Objects and Object Properties, in this manual

• Online and Context help

• HiQ Example Notebooks, which you can find in the
\Examples\Data Visualization folder.

Two-Dimensional Graphs

Two-Dimensional Graph Features
Two-dimensional graphs support the following features:

• Multiple Plot Style

– Point

– Line

– Line-point

– Bar

• Multiple Plots

• Multiple Y Axes

• Auto Scaling

• Configurable Axes

• Legends

• Cartesian and Polar Coordinate Systems

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-2 © National Instruments Corporation

Creating a 2D Graph
To create a 2D graph interactively, use the following procedure:

1. Select the 2D graph tool from the Tools toolbar (or select
Notebook»Create»2D Graph).

2. Click and drag a region on the Notebook page.

To create a 2D graph programmatically, use the createGraph function:

graph = CreateGraph(<Graph2D>);

where <Graph2D> is a HiQ constant that specifies a 2D graph, and graph
is the new Graph object.

After creating a graph, you can perform the following tasks, either
interactively or programmatically:

• Add one or more plots to the graph

• Set and get graph and plot properties

• Change the data associated with a specific plot

• Remove plots from the graph

Adding a Plot to an Existing 2D Graph
To add a plot to an existing 2D graph interactively, use the following
procedure:

1. Right click on the graph and select New Plot to display the New 2D
Plot dialog box.

2. Specify the range and domain for the plot and select OK . You also can
select the desired plot type and coordinate system.

3. Repeat steps 1 and 2 to add multiple plots to the graph.

To add a plot to an existing 2D graph programmatically, use the addPlot
function. This function has a variety of usages for creating Y, X-Y, and
function plots.

• To plot a vector of data against its indices

plotID = addPlot(graph,y);

where graph is the graph to modify, and y is the vector to plot.
plotID contains a unique negative integer value that represents the
plot. Use this ID to refer to the plot in subsequent operations.

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-3 HiQ Reference Manual

• To plot one vector versus another

plotID = addPlot(graph,x,y);

where x is a vector of domain values, and y is a vector of range values.

• To plot a function over a domain of values

plotID = addPlot(graph,x,yFct);

where x is a vector of domain values, and yFct is a single-valued
function. yFct can be a HiQ or user-defined function. For example,
you can plot the sin function evaluated from 0 to π:

//Generate a sequence from 0 to pi in steps of 0.1

x = seq(0,<pi>,0.1);

//Add the plot to 'myGraph'

addPlot(myGraph,x,sin);

• To create a plot using a specific plot ID, use one of the following forms:

addPlot(graph,plotID,y);

addPlot(graph,plotID,x,y);

addPlot(graph,plotID,x,yFct);

where plotID is a positive integer value of your choice, unique to all
other plot IDs in the graph.

Creating 2D Plot Objects
With the createPlot function, you can create 2D plots as independent
objects:

plot = createPlot(y);

plot = createPlot(x,y);

plot = createPlot(x,yFct);

where plot is the new plot object. The semantics of the createPlot
forms are identical to those of the addPlot function.

To add a plot object to a graph, use the addPlot function:

addPlot(graph,plot);

where graph is the graph to modify, and plot is the plot object to add.
When you add the plot, you create a link between the plot and the graph.
You can add the same Plot object to multiple graphs. When the data or
properties change, all graphs linked to the plot are updated to reflect the
change.

Note Plot objects cannot be created interactively.

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-4 © National Instruments Corporation

Changing the Data of a 2D Plot
After creating a plot, you can change the underlying data without affecting
the properties of the plot.

To change the data of a plot interactively, use the following procedure.

1. Select the plot you want to change by clicking on it.

2. Right click to display the plot popup and select Change, which
displays the Change 2D Plot dialog box.

3. Specify the new range and domain for the plot and select OK . If the
plot was created interactively, the domain and range information
reflects the original settings used to generate the plot. Otherwise, the
domain and range fields are blank.

The graph updates to reflect the new plot data.

To change the data of an embedded plot programmatically, use the
changePlotData function with one of the following forms:

changePlotData(graph,plotID,y);

changePlotData(graph,plotID,x,y);

changePlotData(graph,plotID,x,yFct);

where graph is the graph to modify, and plotID is the ID of the plot to
change. You also can use the addPlot function, in one of the following
forms, to change the data of a plot:

addPlot(graph,plotID,y);

addPlot(graph,plotID,x,y);

addPlot(graph,plotID,x,yFct);

where plotID specifies the ID of the plot to change. If the specified ID
does not match an existing plot, a new embedded plot is created and
assigned the specified ID.

To change the data of a Plot object programmatically, use the
changePlotData function in one of the following forms:

changePlotData(plot,y);

changePlotData(plot,x,y);

changePlotData(plot,x,yFct);

where plot is the Plot object to change.

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-5 HiQ Reference Manual

Creating a Graph and Plot Simultaneously
If you want to create a 2D graph with a plot in a single step, use the
createGraph function in one of the following forms:

[graph, plotID] = createGraph(y);

[graph, plotID] = createGraph(x,y);

[graph, plotID] = createGraph(x,yFct);

where graph is the new Graph object, and plotID is the ID assigned to the
new plot.

Adding Multiple Y Axes to a 2D Graph
Two-dimensional graphs support up to eight Y axes, each with its own set
of properties. You can associate individual plots with a particular Y axis.
By default, all plots are associated with the primary Y axis. Because
visibility of all secondary axes is set to automatic mode, a secondary axis
becomes visible when you associate a plot with it.

Use the following procedure to interactively associate a plot with a different
Y axis.

1. Select the plot.

2. Right click and select Properties.

3. Select the axis in the Associated Y Axis control on the General
subpage and press OK .

To associate a plot with a different Y axis programmatically, set the yAxis
property of the plot. Refer to Setting Graph Properties later in this chapter
for information about the yAxis plot property.

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-6 © National Instruments Corporation

Three-Dimensional Graphs

Three-Dimensional Graph Features
Three-dimensional graphs support the following features:

• Multiple Plot Styles

– Point

– Line

– Line-Point

– Hidden-Line

– Contour

– Surface

– Surface-Line

– Surface-Contour

– Surface-Normal

• Multiple Plots

• Auto Scaling

• Configurable Axes

• Legends

• Cartesian, Cylindrical, and Spherical Coordinate Systems

• Color Maps

• Transparency

• Plane Projections

• Orthographic and Perspective Viewing

• Lighting

• Rotation, Zooming, and Panning

Creating a 3D Graph
To create a 3D graph interactively, use the following procedure:

1. Select the 3D graph tool (or select Notebook»Create»3D Graph).

2. Click and drag a region on the Notebook page.

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-7 HiQ Reference Manual

To create a 3D graph programmatically, use the createGraph function:

graph = CreateGraph(<Graph3D>);

where <Graph3D > is a HiQ constant that specifies a 3D graph, and graph
is the new Graph object.

After creating a graph, you can perform the following tasks, either
interactively or programmatically:

• Add one or more plots to the graph

• Set and get graph and plot properties

• Change the data associated with a specific plot

• Remove plots from the graph

Adding a Plot to an Existing 3D Graph
To add a plot to an existing 3D graph interactively, use the following
procedure.

1. Right click on the graph and select New Plot to display the New 3D
Plot dialog box.

2. Specify the range and domain for the plot and select OK . You also can
select the desired plot type and coordinate system.

To programmatically add a plot to an existing 3D graph, use the addPlot
function. This function has a variety of usages for creating parametric curve
plots, surface plots, and parametric surface plots.

• To create a simple surface plot

plotID = addPlot(graph,Z);

where graph is the graph to modify, and Z is the matrix of range values
to plot. The indices of the matrix are used for the x and y domain
values. plotID contains a unique negative integer value that
represents the plot. Use this ID to refer to the plot in subsequent
operations.

• To create a surface plot

plotID = addPlot(graph,x,y,Z);

where x and y are vectors of domain values, and Z is a matrix
of range values.

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-8 © National Instruments Corporation

• To create a surface plot of a function over a domain of values

plotID = addPlot(graph,x,y,zFct);

where x and y are vectors of domain values and zFct is a
double-valued function. zFct can be a HiQ or user-defined function.
For example, you can plot the pow function evaluated from 0 to π.

//Generate a sequence from 0 to pi in steps of 0.1

v = seq(0,<pi>,0.1);

//Add the plot to the graph object named 'myGraph’

addPlot(myGraph,v,v,pow);

• To create a parametric surface plot

plotID = addPlot(graph,X,Y,Z);

where X, Y, and Z are matrices.

• To create a parametric surface plot of a set of functions over a domain
of values

plotID = addPlot(graph,u,v,xFct,yFct,zFct);

where u and v are vectors of domain values and xFct , yFct , and zFct
are double-valued functions. Each function is evaluated over the u and
v domains to produce a matrix. Then, this collection of matrices is
plotted as a parametric surface.

• To create a parametric curve plot

plotID = addPlot(graph,x,y,z);

where x , y, and z are vectors representing the points of the curve.

• To create a parametric curve plot of a set of functions over a domain
of values

plotID = addPlot(graph,t,xFct,yFct,zFct);

where t is a vector of domain values and xFct , yFct , and zFct are
single-valued functions. Each function is evaluated over the t domain
to produce a vector. Then, this collection of vectors is plotted as a
parametric curve.

• To create a plot using a specific plot ID, use one of the following forms:

addPlot(graph,plotID,Z);

addPlot(graph,plotID,x,y,Z);

addPlot(graph,plotID,x,y,zFct);

addPlot(graph,plotID,X,Y,Z);

addPlot(graph,plotID,u,v,xFct,yFct,zFct);

addPlot(graph,plotID,x,y,z);

addPlot(graph,plotID,t,xFct,yFct,zFct);

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-9 HiQ Reference Manual

where plotID is a positive integer value of your choice, unique to all
other plot IDs in the graph.

Creating 3D Plot Objects
With the createPlot function, you also can create 3D plots as
independent objects:

plot = createPlot(Z);

plot = createPlot(x,y,Z);

plot = createPlot(x,y,zFct);

plot = createPlot(X,Y,Z);

plot = createPlot(u,v,xFct,yFct,zFct);

plot = createPlot(x,y,z);

plot = createPlot(t,xFct,yFct,zFct);

where plot is the new Plot object. The semantics of the createPlot
forms are identical to those of the addPlot function.

To add a Plot object to a graph, use the addPlot function:

addPlot(graph,plot);

where graph is the graph to modify, and plot is the Plot object to add.
When you add the plot, you create a link between the plot and the graph.
You can add the same Plot object to multiple graphs. When the data or
properties change, all graphs linked to the plot are updated to reflect the
change.

Note Plot objects cannot be created interactively.

Changing the Data of a 3D Plot
After creating a plot, you can change the underlying data without affecting
the properties of the plot.

To change the data of a plot interactively, use the following procedure.

1. Select the plot you want to change.

2. Right click to display the plot popup and select Change, which
displays the Change 3D Plot dialog box.

3. Specify the new range and domain for the plot and select OK . If the
plot was created interactively, the domain and range information
reflect the original settings used to generate the plot. Otherwise, the
domain and range fields are blank.

The graph updates to reflect the new plot data.

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-10 © National Instruments Corporation

To programmatically change the data of an embedded plot, use the
changePlotData function in one of the following forms:

changePlotData(graph,plotID,Z);

changePlotData(graph,plotID,x,y,Z);

changePlotData(graph,plotID,x,y,zFct);

changePlotData(graph,plotID,X,Y,Z);

changePlotData(graph,plotID,u,v,xFct,yFct,zFct);

changePlotData(graph,plotID,x,y,z);

changePlotData(graph,plotID,t,xFct,yFct,zFct);

where graph is the graph to modify, and plotID is the ID of the plot to
change. You also can use the addPlot function, in one of the following
forms, to change the data of a plot:

addPlot(graph,plotID,Z);

addPlot(graph,plotID,x,y,Z);

addPlot(graph,plotID,x,y,zFct);

addPlot(graph,plotID,X,Y,Z);

addPlot(graph,plotID,u,v,xFct,yFct,zFct);

addPlot(graph,plotID,x,y,z);

addPlot(graph,plotID,t,xFct,yFct,zFct);

where plotID specifies the ID of the plot to change. If the specified ID
does not match an existing plot, a new embedded plot is created and
assigned the specified ID.

To programmatically change the data of a plot object, use the
changePlotData function in one of the following forms:

changePlotData(plot,Z);

changePlotData(plot,x,y,Z);

changePlotData(plot,x,y,zFct);

changePlotData(plot,X,Y,Z);

changePlotData(plot,u,v,xFct,yFct,zFct);

changePlotData(plot,x,y,z);

changePlotData(plot,t,xFct,yFct,zFct);

where plot is the plot object to change.

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-11 HiQ Reference Manual

Creating a Graph and Plot Simultaneously
Use the createGraph function, in one of the following forms, to create a
3D graph with a plot in a single step:

[graph,plotID] = createGraph(Z);

[graph,plotID] = createGraph(x,y,Z);

[graph,plotID] = createGraph(x,y,zFct);

[graph,plotID] = createGraph(X,Y,Z);

[graph,plotID] = createGraph(u,v,xFct,yFct,zFct);

[graph,plotID] = createGraph(x,y,z);

[graph,plotID] = createGraph(t,xFct,yFct,zFct);

where graph is the new Graph object, and plotID is the ID assigned to the
new plot.

Creating 4D Plots
Four-dimensional plots are three-dimensional surface or curve plots with
additional information to control the color assignment for each point in the
plot. Color is assigned based on the value of the color map style property
for the plot. If the color map style is set to none, all points in the plot use
the same color. If the color map style is set to shaded, spectrum, or
grayscale, the color for each point is calculated by linearly scaling the
point’s magnitude onto a range of color values defined by the color map.
The magnitude of the point is either its Z value or the corresponding
element in the optional magnitude data supplied when the plot was created.

The createGraph , createPlot , addPlot , and changePlotData
functions support an optional last parameter that defines the magnitude data
for the plot. For example, you can create a 3D surface plot of sin(x) * cos(y)
with a random matrix as the magnitude data:

//Create a sequence from 0 to pi in steps of 0.1

v = seq(0,<pi>,0.1);

//Create a function for sin(x) * cos(y)

fct = {func: x,y: "sin(x) * cos(y)");

//Create a mesh of sin(x) * cos(y) over 0 to pi

Z = eval(fct,v,v,<mesh>);

//Create a mesh of random numbers over 0 to pi

w = eval(random,v,v,<mesh>);

//Create the plot with separate magnitude data

addPlot(graph,Z,w);

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-12 © National Instruments Corporation

Interacting with 3D Graphs
You can rotate, zoom, and pan a 3D graph using your mouse.

• To rotate a graph, press and hold the left mouse button while it is
positioned over the graph, and move the mouse to rotate the graph.

• To zoom in or out on a graph, use the same procedure for rotating the
graph while pressing the <Alt> key. When you move the mouse down,
you zoom in, and when you move up, you zoom out. You also can use
the mouse wheel to zoom the graph.

• To pan a graph, use the same procedure for rotating a graph while
pressing the <Shift> key.

To terminate the operation, release the mouse button. To set the graph to its
default viewing position, select Default View from the right popup.

By default, HiQ draws a reduced representation of the graph and its plots
when rotating, zooming, or panning. You can force HiQ to draw the entire
graph by deselecting the Fast Draw for the Zoom/Pan/Rotate option on
the 3D tab of the Graph property page.

Using Lights
Use lights to enhance the appearance of a graph. You can use up to four
lights at one time. Each light has a variety of properties such as color,
position, and attenuation mode. In addition to setting individual lights, you
can specify the ambient light color for the graph.

To configure the lighting interactively, use the Lighting tab on the Graph
property page. Specify the position of a light as a longitude/latitude pair (in
degrees) along with the distance from the center of the unit cube.

To configure the lighting programmatically, use the light properties for the
graph. Refer to the section entitled Light Properties later in this chapter for
a complete list of light properties.

Using Accelerated OpenGL Graphics Adapters
If you have a graphics adapter that supports OpenGL hardware
acceleration, you can enable the Use 3D Hardware Acceleration option in
the File»Preferences dialog. Enabling this option forces HiQ to render 3D
graphs directly to the display adapter, which maximizes rendering
performance.

Disabling this option forces HiQ to render 3D graphs to an off-screen frame
buffer, which is then copied to the screen. HiQ caches this frame buffer and

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-13 HiQ Reference Manual

updates it only when the graph needs to be rendered (such as adding a plot
or changing the view position). For complex 3D graphs, the time to render
the image into the frame buffer greatly exceeds the time to copy the frame
buffer to the screen. As a result, simple screen updates that do not require
the graph to re-render (such as scrolling the page) execute very quickly.

The following table summarizes the advantages and disadvantages of
enabling and disabling this option.

Note Changing the Use 3D Hardware Acceleration option does not affect the behavior
of existing graphs.

Common Graph Operations
This section contains common graph operations and properties that pertain
to both 2D and 3D graphs, except where noted.

Setting Graph Properties
Graphs contain many properties that control their appearance and behavior.
You can set properties interactively through the Graph property page or
programmatically using the property notation syntax in HiQ-Script.

Note For the following examples, assume that you have a Graph object g that contains
a single embedded plot, which has an ID of 1.

To programmatically set a graph property, use the following form:

graph.property = value;

where graph specifies the graph to modify, property is the name of the
graph property to set, and value is the new property value. For example,
you can set the title of a graph with the following syntax:

g.title = "My Graph";

Table 3-1. Advantages and Disadvantages of Using 3D Hardware Acceleration

3D Hardware
Acceleration Advantages Disadvantages

Enabled • Faster rendering

• Uses less memory

• Always renders the graph, even for
simple screen updates

Disabled • Fast redraw for simple screen
updates

• Uses more memory

• Slower rendering

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-14 © National Instruments Corporation

 Table 3-2 summarizes the graph properties.

Table 3-2. Graph Properties

Property Data Type Description

background. border.color HiQ Color Defines the border color of the background
area.

border.style HiQ Constanta Defines the border style of the background
area.

color HiQ Color Defines the background color of the graph.

border. color HiQ Color Defines the color of the graph border.

style HiQ Constanta Defines the style of the graph border.

frame. color HiQ Color Defines the color of the frame area.

visible Boolean Displays the frame area of the graph when
set to true . The frame area includes the
area of the graph, which is filled with the
frame color and the graph title.

legend. backColor HiQ Color Defines the background color of the legend.

border.color HiQ Color Defines the border color of the legend.

border.style HiQ Constanta Defines the border style of the legend.

font HiQ Font Defines the font of the legend.

includeUntitled Boolean Defines which plots are included in the
legend.

true —Shows all plots in the legend.

false —Shows only plots that have a title
currently defined.

textColor HiQ Color Defines the text color of the legend.

visible Boolean Displays the legend when set to true .

title Text Defines the title of the graph.

title. color HiQ Color Defines the text color of the graph title.

visible Boolean Displays the graph title when set to true .

type HiQ Constantb Returns the type of the object. (Read Only)

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-15 HiQ Reference Manual

3D Properties (Valid for 3D Graphs)

dither Boolean Defines the dither mode of the graph.

true —Dithering is enabled.
Combinations of colors are used to
approximate selected colors that cannot be
directly displayed because of a limited
number of display colors on the system.

false —Dithering is disabled.

Note: This property is valid on 256 color
displays only.

fastDraw Boolean Defines how the graph is drawn during
interactive operations such as rotating,
zooming, and panning.

true —Draws a reduced representation of
the graph and its plots.

false —Draws the entire graph and its
plots. Using this mode can create
unresponsive interaction for complex
graphs.

grid. frameColor HiQ Color Defines the color of the grid frame.

smoothing Boolean Defines the smoothing mode for grid lines.

true —Uses a technique called
anti-aliasing to create smoother grid lines.

false —Draws grid lines without
smoothing.

xy Boolean Draws the X-Y grid plane when true .

xz Boolean Draws the X-Z grid plane when true .

yz Boolean Draws the Y-Z grid plane when true .

lighting. ambientColor HiQ Color Defines the ambient light color for the
graph when lighting is enabled.

enable Boolean Enables graph lighting when true .

Table 3-2. Graph Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-16 © National Instruments Corporation

projectionStyle HiQ Constant Defines the projection style of the graph.
Valid values include
<orthographic >
<perspective >

smoothing Boolean Defines the smoothing mode for drawing
plots on the graph.

true —Uses a technique called
anti-aliasing to create smoother lines and
polygons when drawing plots.

false —Draws plots without smoothing.

view. autoDistance Boolean Defines how the viewing distance is set.

true —Viewing distance is automatically
calculated.

false —Viewing distance is defined by the
view.distance property.

distance Real Specifies the distance of the viewing
position from the origin.

latitude Real Defines the latitude of the viewing position
when the view.mode property is
<viewUserDefined >.

longitude Real Defines the longitude of the viewing
position when the view.mode property is
<viewUserDefined >.

mode HiQ Constant Defines the viewing position of the graph.
Valid values include
<viewXYPlane >
<viewxzPlane >
<viewyZPlane >
<viewUserDefined >

a. For a complete list of HiQ Constants for borders, see Table B-2, Border Style Constants, in Appendix B, HiQ Constants.

b. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 3-2. Graph Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-17 HiQ Reference Manual

Plot Properties
To set a property of an embedded plot, use the following syntax:

graph.Plot(plotID).property = value;

where graph specifies the graph to modify, plotID specifies the ID of the
plot to modify, property is the name of the plot property to set, and value
is the new property value to apply. plotId can be a scalar constant or scalar
object.

To set a property for all plots in the graph, use the following form:

graph.Plots.property = value;

To set a property of a Plot object, use the following form:

plot.property = value;

where plot specifies the Plot object to modify, property is the name of
the plot property to set, and value is the new property value to apply.

Table 3-3 summarizes the plot properties.

Table 3-3. Plot Properties

Property Data Type Description

coordinateSystem HiQ Constant Defines the coordinate system of the plot.
Valid values for 2D plots include
<cartesian >
<polar >

Valid values for 3D plots include
<cartesian >
<cylindrical >
<spherical >

fill.color HiQ Color Defines the fill color of the plot if you define
the style as a filled plot. Filled plot styles
include
<verticalBar >
<horizontalBar >
<surface >
<surfaceLine >
<surfaceNormal >
<surfaceContour >

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-18 © National Instruments Corporation

line. color HiQ Color Defines the line color of the plot.

style HiQ Constant Defines the line style of the plot. Valid
values include
<solidLine >
<dotLine >
<dashLine >
<dotDashLine >

If you set this property to anything other
than <solidLine >, the line width is set to
zero.

width Real Defines the width of the line in points. If the
value is greater than zero, the line style is set
to <solidLine >. If you specify a zero line
width, the line appears as narrow as possible
while still remaining visible.
(Valid Range: 0–100)

numGraphs Integer Returns the number of graphs displaying the
plot. (Read Only)

point. color HiQ Color Defines the color of the points of the plot.

frequency Integer Defines the frequency of points in the plot.
For example, a frequency of one indicates
that all points should be drawn. A frequency
of two indicates that every other point
should be drawn. This value must be greater
than zero.

size Real Defines the size of the plot points in points.
(Valid range: 0–100)

Table 3-3. Plot Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-19 HiQ Reference Manual

point.
(continued)

style HiQ Constant Defines the style of the point. Valid values
include
<emptySquare >
<solidSquare >
<emptyCircle >
<solidCircle >
<diamond >
<asterisk >
<boldX >
<noPoint >

The following values are valid for 3D plots:
<wireframeSphere >
<solidSphere >
<wireframeCube >
<solidCube >

style HiQ Constant Defines the style of the plot. Valid values for
2D plots include
<point >
<line >
<linePoint >
<verticalBar >
<horizontalBar >

Valid values for 3D surface plots include
 <point >
<line >
<hiddenLine >
<contour >
<surface >
<surfaceLine >
<surfaceNormal >
<surfaceContour >

Valid values for 3D curve plots include
<point >
<line >

title Text Defines the plot title. This title appears in
the legend and on the graph.

Table 3-3. Plot Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-20 © National Instruments Corporation

title. color HiQ Color Defines the color of the title displayed on the
graph, not in the legend.

font HiQ Font Defines the font of the plot title displayed on
the graph, not in the legend.

visible Boolean Displays the title on the graph when true .

type HiQ Constanta Returns the type of the object. (Read Only)
This property is valid for Plot objects only.

visible Boolean Displays the plot on its graphs when set to
true .

2D Properties (Valid for 2D Plots)

line.interpolation HiQ Constant Specifies the interpolation style used to
draw the line of the plot. Valid values
include

<linear >—Draws the plot point-to-point.

<cubicSpline >—Draws the plot with
bezier curves that pass through each point.

yAxis Integer Defines the index of the y-axis with which
the plot is associated. (Valid range: 1–8)

3D Properties (Valid for 3D Plots)

cacheData Boolean Improves drawing performance by caching
intermediate calculations when set to true .
However, you use more memory in the
process. When false , the plot does not
cache intermediate calculations, which
reduces memory usage.

colorMap.style HiQ Constant Defines the color map used by the plot. Valid
values include
<none >
<shaded >
<grayscale >
<spectrum >

Table 3-3. Plot Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-21 HiQ Reference Manual

contour. anchor.enable Boolean Enables the contour anchor if true . The
anchor defines a value that a contour is
guaranteed to pass through.

anchor.value Real Defines the value of the contour anchor.

basis HiQ Constant Defines the basis of the plots contours. Valid
values include

<magnitude >—Contours based on the
magnitude data, if specified. Otherwise,
based on Z data.

<x>—Contours based on X data.

<y>—Contours based on Y data.

<z>—Contours based on Z data.

interval Integer Defines the distance between each level of
the contour. When you set this value, the
number of levels adjusts to accommodate
the new interval.

levelList Real Vector Defines the contour levels of the plot. Each
element of the vector contains the position
of a contour.

levels Integer Defines the number of contour levels for the
plot.

fill.style HiQ Constant Defines the fill style of the plot. Valid values
include
<smooth >
<flat >

projection. xy Boolean Draws the X-Y plane projection of the plot
when true .

xz Boolean Draws the X-Z plane projection of the plot
when true .

yz Boolean Draws the Y-Z plane projection of the plot
when true .

Table 3-3. Plot Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-22 © National Instruments Corporation

Contour Properties
To set a property of a particular contour in a plot, use the following form:

graph.plot(plotID).contour(n).property = value;

where graph specifies the graph to modify, plotID specifies the ID of the
plot to modify, n is the one-based index of the contour to modify,
property is the name of the property to set, and value is the new property
value to apply.

To set a property for all contours in a plot, use the following form:

graph.plot(plotID).contours.property = value;

showProjectionsOnly Boolean Defines the show projections only mode.

true —Draws all projections that are
currently enabled but does not draw the plot.

false —Draws all projections that are
currently enabled and draws the plot.

transparency Integer Indicates the percentage of transparency,
where a value of 0 specifies opaque and 100
specifies completely transparent.

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 3-3. Plot Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-23 HiQ Reference Manual

Table 3-4 summarizes the contour properties.

Table 3-4. Contour Properties

Property Data Type Description

color HiQ Color Defines the color of the contour line.

label Text Labels the contour. If the text contains a
%value , the value of the level is substituted
for the %value tag. If the text contains a
%level , the level number is substituted for
the %level tag.

label. color HiQ Color Defines the color of the contour label.

decimalPlaces Integer Defines the number of decimal places used
to format the contour label.

font HiQ Font Defines the font of the contour label.

format HiQ Constant Defines the contour label format.
Valid values include
<decimal >
<scientific >
<engineering >

visible Boolean Draws the contour label when true .

level Real Defines the position of the plot.

style HiQ Constant Defines the line style of the contour line.
Valid values include
<solidLine >
<dotLine >
<dashLine >
<dotDashLine >

width Real Defines the width of the contour line in
points. (Valid range: 0–100)

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-24 © National Instruments Corporation

Table 3-5 contains plot property examples.

Axis Properties
 To set an axis property, use the following form:

graph.axis.axisType.property = value;

where graph specifies the graph to modify, axisType specifies the axis to
modify, property is the name of the axis property to set, and value is the
new property value to apply.

To set a property for all axes, use the following form:

graph.axes.property = value;

Table 3-5. Examples: Setting Plot Properties

HiQ-Script Description

g.plot(1).title = "Rainfall"; Sets the title of the embedded plot with an
ID of 1 to Rainfall .

g.plot(voltagePlot).line.color = <blue>; Sets the line color of the embedded plot
with an ID of voltagePlot to blue.

myPlot.coordinateSystem = <polar>; Sets the coordinate system of the myPlot
Plot object to polar.

g.plots.style = <LinePoint>; Sets the style of all plots in the graph to
line-point.

g.plot(1).contour(2).label="Sea Level"; Sets the label of the second contour level of
the embedded plot with an ID of 1 to Sea
Level .

g.plot(1).contours.label.color = <red>; Sets the label color of all contours of the
embedded plot with an ID of 1 to red.

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-25 HiQ Reference Manual

Table 3-6 summarizes the valid values for axisType .

Table 3-6. Valid Values for axisType

axisType Description

2D Graphs

x X axis only.

y Primary Y axis only.

xy X and primary Y axes.

y (n) nth Y axis, where n is a scalar value ranging
from 1 to 8.

y (n1,n2,n3,...) Collection of Y axes described by the sequence of
scalar values n1, n2, n3, ..., each ranging from 1 to 8.

y(v) Collection of Y axes described by the vector v.

3D Graphs

x X axis only.

y Y axis only.

z Z axis only.

xy X and Y axes.

xz X and Z axes.

yz Y and Z axes.

xyz X, Y, and Z axes.

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-26 © National Instruments Corporation

Table 3-7 summarizes valid axis properties.

Table 3-7. Axis Properties

Property Data Type Description

label. color HiQ Color Defines the color for the axis labels.

decimalPlaces Integer Defines the number of decimal places to
display for the axis labels. Valid values
include <auto > and the range 0–15.

font HiQ Font Defines the font for the axis labels.

format HiQ Constant Defines the format of the labels. Valid
values include
<decimal >
<scientific >
<engineering >

normal Boolean Draws the labels at the normal axis position
when true .

opposite Boolean Draws the labels at the opposite axis
position when true .

majorGrid color HiQ Color Defines the color of the major grid lines.

divisions Integer Defines the number of major grid divisions
the axis contains. Valid values include
<auto > and the range 1–100.

insideTick Boolean Draws the tick marks on the inside of the
axis when set to true .

normalTick Boolean Draws tick marks at the normal axis
location when set to true .

oppositeTick Boolean Draws tick marks at the opposite axis
location when set to true .

outsideTick Boolean Draws the tick marks on the outside of the
axis when set to true .

visible Boolean Draws the major grid lines when true .

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-27 HiQ Reference Manual

minorGrid color HiQ Color Defines the color of the minor grid lines.

divisions Integer Defines the number of minor grid divisions
between each major grid division.
(Valid values: 1–100)

insideTick Boolean Draws tick marks on the inside of the axis
when true .

normalTick Boolean Draws the tick marks at the normal axis
location when true .

oppositeTick Boolean Draws the tick marks at the opposite axis
location when true .

outsideTick Boolean Draws tick marks on the outside of the axis
when true .

visible Boolean Draws the minor grid lines when true .

range. inverted Boolean Draws an inverted axis, starting with the
minimum value and ending with the
maximum value when this property is set to
true . When false , this property draws
the axis normally, starting with the
maximum value and proceeding to the
maximum value.

max Real Defines the maximum value of the axis.

min Real Defines the minimum value of the axis.

mode HiQ Constant Specifies the range mode of the axis, which
defines how to compute the range of the
axis. Valid values include

<auto >—Computes the minimum and
maximum values for the axis based on the
extents of the plots.

<manual >—Uses the values of the
range.min and range.max properties to
define the range.

Table 3-7. Axis Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-28 © National Instruments Corporation

scaling.mode HiQ Constant Defines the scaling of the axis. Axes can be
scaled either linearly or logarithmically.
Valid values include
<linear >
<log >

title Text Defines the title of the axis.

title. color HiQ Color Defines the color of the axis title.

font HiQ Font Defines the font of the axis title.

normal Boolean Draws the title at the normal axis position
when true .

opposite Boolean Draws the title at the opposite axis position
when true .

visibility HiQ Constant Defines the axis visibility.
Valid values include

<on>—Always visible.

<off >—Never visible.

<auto >—Drawn if the axis has an
associated plot.

Table 3-7. Axis Properties (Continued)

Property Data Type Description

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-29 HiQ Reference Manual

Table 3-8 contains axis property examples.

Light Properties
To set a property of an individual light in a 3D graph, use the
following form:

graph.light(lightID).property = value;

where graph specifies the graph to modify, lightID specifies the light to
modify, property is the name of the light property to set, and value is the
new property value to apply. Valid values for lightID are 1, 2, 3, and 4.
To set a property for all lights in the graph, use the following form:

graph.lights.property = value;

Table 3-8. Examples: Setting Axis Properties

HiQ-Script Description

g.axis.x.visibility = <off>; Turns off the visibility of the X axis.

g.axis.y(2).title = "Voltage"; Sets the second Y axis title to Voltage .

g.axis.y(1,3,6).label.color = <red>; Sets the label color for the first, third, and
sixth Y axes to red.

axisList = {vector: 2,4,7};
g.axis.y(axisList).title.color=<blue>;

Sets the label color for the second, fourth,
and seventh Y axes to blue.

g.axis.xyz.scaling.mode = <auto>; Set the scaling mode for the X, Y, and Z
axes to auto.

g.axes.label.format = <scientific>; Sets the label format for all axes to
scientific.

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-30 © National Instruments Corporation

Table 3-9 summarizes the light properties.

Table 3-10 contains light property examples.

Note Use the context help from the Graph property page to obtain additional
information about individual properties.

Table 3-9. Light Properties

Property Data Type Description

attenuation HiQ Constant Defines the attenuation style of the light
source. Valid values include
<none >
<linear >
<quadratic >

color HiQ Color Defines the color of the light source.

distance Real Defines the distance of the light source
from the center of the graph.

enable Boolean Enables the light when set to true .

latitude Real Defines the latitudinal position of the light
source.

longitude Real Defines the longitudinal position of the
light source.

Table 3-10. Examples: Setting Light Properties

HiQ-Script Description

g.light(1).enable = true; Enables the first light.

g.light(4).color = <red>; Sets the color of the fourth light to red.

g.lights.attenuation = <quadratic>; Sets the attenuation mode for all lights
to quadratic.

Chapter 3 Using HiQ Graphics

© National Instruments Corporation 3-31 HiQ Reference Manual

Querying Graph Properties
You can query a graph property for its current value using the same
property notation syntax that you use to set properties. For example, use the
following syntax to query a graph for its title:

title = g.title;

Because property values might be different, you cannot query aggregate
properties. For example, you can set the title color property of all plots in
the graph:

g.plots.title.color = <red>;

However, you cannot query the title color property of all plots as in the
following code, which generates a run-time error:

color = g.plots.title.color;

Using Auto Scaling
Graph axes support both auto and manual scaling. When auto scaling is
active, the range of the axis automatically adjusts to include the minimum
and maximum values of all plots in the graph. When manual scaling is
active, the axis range remains fixed based on the currently defined
minimum and maximum values.

Using Legends
Use legends to describe the contents of the graph. A legend contains a
title and icon for each plot in the graph. The icon resembles the visual
appearance of the plot and the title is the current value of the plot.title
property. To configure the legend interactively, use the Graph tab on the
Graph property page. To configure the legend programmatically, use the
legend properties of the graph. For a complete list of legend properties,
refer to Setting Graph Properties earlier in this chapter.

You can move and size the legend within the graph. To move the legend,
depress the <Alt> key and click-drag within the legend area. To size the
legend, use the standard Windows sizing techniques. To restore the graph
to its default layout scheme, select Default Layout from the right popup.

Chapter 3 Using HiQ Graphics

HiQ Reference Manual 3-32 © National Instruments Corporation

Removing Plots
You can interactively remove a plot from a graph with one of the following
two methods, both of which you can undo.

Select Add/Remove Plot... from the graph popup, which displays the
Add/Remove Plots dialog box. From this dialog, you can add and remove
plots from the graph. The Available Plots control lists all of the Plot objects
that you can add to the graph. The Graph’s Plots control lists all of the plots
currently contained by the graph. Use the Add >>, Add All >> ,
<< Remove, and << Remove All controls to select the desired plots.

OR

Select the plot you want to delete. Right click to display the plot popup, and
select Remove.

To programmatically remove plots from a graph, use the removePlot
function in one of the following forms:

• To remove all plots from a graph

removePlot(graph);

where graph is the graph to modify.

• To remove an embedded plot from a graph

removePlot(graph,plotID);

where graph is the graph to modify, and plotID is the ID of the plot
to remove.

• To remove a Plot object from a graph

removePlot(graph,plot);

where graph is the graph to modify, and plot is the plot object
to remove.

Note When you remove an embedded plot from a graph, you delete the plot. When you
remove a linked plot from a graph, you do not delete the Plot object, only the view.

© National Instruments Corporation 4-1 HiQ Reference Manual

4
HiQ Objects and
Object Properties

This chapter explains HiQ objects in general, describes each HiQ object
specifically, and provides all properties and property descriptions for each
object.

HiQ Objects
An object is an entity in a HiQ Notebook that contains data of a specific
type, such as numeric, graphic, text, or HiQ-Script. Objects work
together in a Notebook to generate and display solutions to analysis and
visualization problems. You can divide HiQ objects into three categories.

• Numeric Objects—Scalars, vectors, matrices, and polynomials, all
having integer, real, and complex components. Numeric objects
contain the actual data you are analyzing.

• Visualization Objects—Two- and three-dimensional graphs and text
objects. Although you can place numeric objects on the Notebook page
to view their actual values, use graphs and text to better understand
the data.

• Auxiliary Objects—Scripts, colors, fonts, and constants.

Object Creation
You can create objects two different ways: interactively by using the Tools
toolbar and dragging the object out on a Notebook page or dynamically
from script. Although you can create most objects interactively, objects
such as fonts and colors can be created only from script.

For more information about creating objects interactively, see the
Getting Results with HiQ manual.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-2 © National Instruments Corporation

Object Views
Although objects are always stored in a Notebook, they are not always
visible on the Notebook page—an object can exist without a view. When
you interactively create an object by selecting a tool from the Tools toolbar
and placing it on the Notebook page, you create both an object and a single
view of that object.

Except for ActiveX objects and controls, objects can have more than
one view. When an object has multiple views, each view has the same
properties. Multiple views allow you to represent the object on more than
one Notebook page. If you do not want to place a view of an object on the
printable Notebook page, use floating views to interact with the object.
You can create a floating view of an object by right clicking on the object
name in the Object List and selecting View in Window.

You can copy views to the clipboard, by right clicking on them and
selecting Copy from the View menu, and paste them into any application
that allows you to paste bitmaps or metafiles.

Creating Views
Objects are listed under the Objects entry for the Notebook in the Notebook
Explorer. To create a view of an object, select the object in the Explorer and
drag it to the Notebook page.

Deleting Views
If you delete a view of an object, only that view is deleted—the object and
all other views remain in the Notebook. However, if you delete the object,
all of its views are deleted.

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-3 HiQ Reference Manual

Object Properties
Object properties can define the look of the object and control the behavior
of the object. Use properties to customize object views and control the data
stored in the object. For example, you can customize a vector by defining
the background color for different views of the vector, or you can control
the number of elements the vector contains using the size property.

Default Property Settings
When you create an object, it inherits the default properties for that
object type. To change the default property settings, create an object
with your desired settings. Select the object view, right click, and choose
Defaults»Update Default Properties from the popup menu. If you change
the properties of an object and decide that you prefer the previous defaults,
select Defaults»Apply Default Properties from the right-click popup of
the object view. To restore the original defaults to the object, select
Defaults»Apply Factory Properties.

Changing Properties
You can change object properties two ways. To change properties
interactively, right click on an object view and select Properties... from the
popup menu. From the property pages, you can interactively set or change
any object property.

You can change any of the properties programmatically with HiQ-Script.
For example, to set the background color of a vector, v, use the following
HiQ-Script:

v.background.color = myColor;

background.color is the name of the background color property for
vector v. With this line of script, the background color changes to myColor ,
a HiQ Color object.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-4 © National Instruments Corporation

HiQ Object Descriptions
The following sections describe each HiQ object in detail. The tables in
each section list and define the properties for that object.

Numeric Scalar Objects
Numeric scalars store single numeric values—integer, real or complex.

• Integer scalar—Stores a single integer in the range –231 through 231–1.

• Real scalar—Stores a value in the range to
with 16 decimal places of precision. The real scalar with the smallest
non-zero magnitude is .

• Complex scalar—Stores a single complex number using two real
values. Each component of the complex number has the same limits as
a single real value.

Table 4-1. Numeric Scalar Object Properties

Property Data Type Description

background.color HiQ Color Defines the background color of object
views.

border. color HiQ Color Defines the border color of object views.

style HiQ Constanta Defines the border style for object views.

cell. color HiQ Color Defines the text color that displays the value
of the object.

font HiQ Font Defines the font that displays the value.

width Real Defines the number of characters that are
visible. (Valid range: 1.0–99.99)

1.8 10308×– 1.5 10308×

2.23 10 308–×

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-5 HiQ Reference Manual

type HiQ Constantb Returns the type of the object. (Read Only)

type. numeric HiQ Constant Defines the type of element stored in the
numeric object. (Read Only)
Valid values include
<integer >
<real >
<complex >

object HiQ Constant Defines the type of numeric object.
(Read Only) Valid values include
<scalar >
<vector >
<matrix >
<polynomial >

Integer Properties

base HiQ Constant Defines the base used to display the value of
the object. Valid values include
<decimal >
<binary >
<binaryB >
<octal >
<octal0 >
<octalO >
<hexadecimal >
<hexadecimal0x >
<hexadecimalDollar >
<hexadecimalH >

digits Integer Defines the minimum number of digits to
display. (Valid range: 1–32)

Table 4-1. Numeric Scalar Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-6 © National Instruments Corporation

Real Properties

decimalPlaces Integer Defines the number of decimal places to
display. If the value is negative, the absolute
value defines the number of decimal places
to display and trailing zeros are removed.

exponentialDigits Integer Defines the number of exponential digits to
display. (Valid range: 1–3)

format HiQ Constant Defines the real display format to use.
Valid values include
<real >
<scientific >
<engineering >

Complex Real Properties

complexFormat HiQ Constant Defines the complex mode used to display
the value. Valid values include
<sumI >
<sumJ>
<pair >
<degrees >
<radians >
<gradians >

i Real Defines the imaginary part of the number.

Table 4-1. Numeric Scalar Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-7 HiQ Reference Manual

imaginary. decimalPlaces Integer Defines the number of decimal places to
display for the imaginary part of the number.
If the value is negative, the absolute value
defines the number of decimal places to
display and trailing zeros are removed.

exponential
Digits

Integer Defines the number of exponential digits to
display for the imaginary part of the number.
(Valid range: 1–3)

format HiQ Constant Defines the real display format to use for the
imaginary part of the number. Valid values
include
<real >
<scientific >
<engineering >

r Real Defines the real part of the number.

real. decimalPlaces Integer Defines the number of decimal places to
display for the real part of the number. If the
value is negative, the absolute value defines
the number of decimal places to display and
trailing zeros are removed.

exponential
Digits

Integer Defines the number of exponential digits to
display for the real part of the number.
(Valid range: 1–3)

format HiQ Constant Defines the real display format to use for the
real part of the number. Valid values include
<real >
<scientific >
<engineering >

a. For a complete list of HiQ Constants for border, see Table B-2, Border Style Constants, in Appendix B, HiQ Constants.

b. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 4-1. Numeric Scalar Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-8 © National Instruments Corporation

Numeric Vector Objects
Vector objects store multiple scalar objects as single objects. Each element
of a vector is equivalent to its scalar counterpart. You can assume that
vectors are single-column matrices in the linear algebra sense.

Accessing Elements of a Vector
You can access a specific vector element in HiQ-Script using square
brackets ([] operator). The first element is always indexed at 1. The index
of the last element equals the size of the vector.

If you access a value at an index greater than the current size, the vector
grows so that the index is valid. Any new elements are initialized to zero.
Although vectors can grow to accommodate a larger index, vectors cannot
automatically shrink to fit the number of elements. If you need to fix a
vector at a specific size, set the size property, and the vector assumes the
new size.

Automatically Creating an Element
You automatically create a vector when you access an index of a scalar
object or an object that does not exist.

For example, you can create an integer vector A with an initial size of two
elements, if A has not already been assigned or A is currently a scalar object.

A[2] = 5;

The first element is zero, and the second element is 5. You also can create
a vector using the vector initializer syntax.

MyVector = {v: 1, 2, 3, 4};

With this syntax, you create a four-element vector containing the values 1,
2, 3, and 4.

Note When you know the maximum size required for a vector, set the vector size to its
maximum to improve script performance (so the vector does not resize each time
you access an out-of-range element).

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-9 HiQ Reference Manual

Table 4-2. Numeric Vector Object Properties

Property Data Type Description

background.color HiQ Color Defines the background color of object
views.

border. color HiQ Color Defines the border color of object views.

style HiQ Constanta Defines the border style for object views.

cell. color HiQ Color Defines the text color that displays the value
of the object.

font HiQ Font Defines the font that displays the values
contained in the vector.

width Real Defines the number of characters visible in
each cell. (Valid range: 1.0–99.99)

grid.line.color HiQ Color Defines the line color of the lines that
separate each cell.

grid.visible Boolean Makes visible the lines that separate values
when set to true . When false , this
property turns off the grid lines.

label(n) Text Defines the label text for the value at index
n. n must be an Integer scalar greater than
zero. You do not need to define any values in
the vector for n to set the label atn.

labels. background.
color

HiQ Color Defines the background color in the
label area.

color HiQ Color Defines the font color that displays the
vector labels.

default.visible Boolean Turns on default labels when set to true .
When false , this property turns off default
labels.

font HiQ Font Defines the font that displays the vector
labels.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-10 © National Instruments Corporation

labels.
(continued)

user.visible Boolean Turns on user labels when set to true .
When false , this property turns off user
labels.

visible Boolean Turns on both user and default labels when
set to true . When set to false , this
property turns off both user and default
labels. This property returns true if any
labels are visible, and false if no labels are
visible.

size Integer Defines the size of the vector—that is, the
number of elements in the vector—which
must be greater than zero.

type HiQ Constantb Returns the type of the object. (Read Only)

type. numeric HiQ Constant Defines the type of element stored in the
numeric object. (Read Only)
Valid values include
<integer >
<real >
<complex >

object HiQ Constant Defines the type of numeric object.
(Read Only) Valid values include
<scalar >
<vector >
<matrix >
<polynomial >

Table 4-2. Numeric Vector Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-11 HiQ Reference Manual

Integer Properties

base HiQ Constant Defines the base used to display the value of
the object. Valid values include
<decimal >
<binary >
<binaryB >
<octal >
<octal0 >
<octalO >
<hexadecimal >
<hexidecimal0x >
<hexidecimalDollar >
<hexadecimalH >

digits Integer Defines the minimum number of digits to
display. (Valid range: 1–32)

Real Properties

decimalPlaces Integer Defines the number of decimal places to
display. If the value is negative, the absolute
value defines the number of decimal places
to display and trailing zeros are removed.

exponentialDigits Integer Defines the number of exponential digits to
display. (Valid range: 1–3)

format HiQ Constant Defines the real display format to use.
Valid values include
<real >
<scientific >
<engineering >

Table 4-2. Numeric Vector Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-12 © National Instruments Corporation

ComplexReal Properties

complexFormat HiQ Constant Defines the complex mode used to display
the value. Valid values include
<sumI >
<sumJ>
<pair >
<degrees >
<radians >
<gradians >

i Real Vector Defines the complex part of the vector.
The size of the vector must be the same as
the current vector.

imaginary. decimalPlaces Integer Defines the number of decimal places to
display for the imaginary part of the number.
If the value is negative, the absolute value
defines the number of decimal places to
display and trailing zeros are removed.

exponential
Digits

Integer Defines the number of exponential digits to
display for the imaginary part of the number.
(Valid range: 1–3)

format HiQ Constant Defines the real display format to use for the
imaginary part of the number. Valid values
include
<real >
<scientific >
<engineering >

Table 4-2. Numeric Vector Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-13 HiQ Reference Manual

r Real Vector Defines the real part of the vector. The size
of the vector must be the same as the current
vector.

real. decimalPlaces Integer Defines the number of decimal places to
display for the real part of the number. If the
value is negative, the absolute value defines
the number of decimal places to display and
trailing zeros are removed.

exponential
Digits

Integer Defines the number of exponential digits to
display for the real part of the number.
(Valid range: 1–3)

format HiQ Constant Defines the real display format to use for the
real part of the number. Valid values include
<real >
<scientific >
<engineering >

a. For a complete list of HiQ Constants for border, see Table B-2, Border Style Constants, in Appendix B, HiQ Constants.

b. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 4-2. Numeric Vector Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-14 © National Instruments Corporation

Numeric Matrix Objects
Matrix objects store multiple scalar objects as single objects.

Accessing Elements of a Matrix
To access a single matrix element in HiQ-Script, specify the row and
column of the element, enclosed in square brackets ([] operator). The first
element is indexed at 1,1 (row and column index, respectively).

Like Vector objects, Matrix objects can grow if you access a value at an
index greater than one of the current dimensions. Any new elements are
initialized to zero. Although Matrix objects can grow to accommodate a
larger index, they cannot automatically shrink to fit the number of elements.
If you need to fix a matrix at a specific size, set the size , rows , or
columns properties, and the matrix assumes the new size.

Automatically Creating an Element by Accessing It
You automatically create a matrix when you access an element of a scalar
object or an element of an object that currently does not exist.

For example, you can create an 2–by–2 integer matrix A, as long as A has
not already been used or A is currently a scalar object.

A[2,2] = 5;

The element at 2,2 has a value of 5; all other elements are initialized to zero.
You also can create a matrix by using the matrix initializer syntax.

MyMatrix = {M: 1, 2; 3, 4};

This syntax creates a 2-by-2 element matrix containing the values
1, 2; 3, 4.

Note When you know the maximum size required for a matrix, set the matrix to its
maximum size first to improve script performance (so the matrix does not resize
each time you access an out-of-range element). Each element of a matrix is
equivalent to its scalar counterpart and can be treated identically.

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-15 HiQ Reference Manual

Table 4-3. Numeric Matrix Object Properties

Property Data Type Description

background.color HiQ Color Defines the background color of object
views.

border. color HiQ Color Defines the border color of object views.

style HiQ Constanta Defines the border style of object views.

cell. color HiQ Color Defines the text color that displays the value
of the object.

font HiQ Font Defines the font that displays the values in
the matrix.

width Real Defines the number of characters visible in
each cell. (Valid range: 1.0–99.99)

columns Integer Defines the number of columns in the
matrix, which must be greater than zero.

grid. column.
visible

Boolean Draws the lines that separate columns when
set to true . When false , this property
turns off the column grid lines.

line.color HiQ Color Defines the color used for the lines that
separate each cell.

row.visible Boolean Draws the lines that separate rows when set
to true . When false , this property turns
off the row grid lines.

visible Boolean Draws the lines that separate values when
set to true . When false , this property
turns off the grid lines.

labels. background.
color

HiQ Color Defines the background color in the
label area.

column(n) Text Defines the text of the label for the values at
column index n. n must be an Integer scalar
greater than zero but can exceed the number
of columns in the matrix.

color HiQ Color Defines the font color that displays the
vector labels.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-16 © National Instruments Corporation

labels.
(continued)

column.
default.visible

Boolean Turns on default column labels when set to
true . When false , this property turns off
default column labels.

column.user.
visible

Boolean Turns on user column labels when set to
true . When false , this property turns off
user column labels.

column.
visible

Boolean Turns on column labels when set to true .
When false , this property turns off column
labels. This property returns true if any
column labels are visible and false if no
column labels are visible.

default.visible Boolean Turns on all default labels when set to true .
When false , this property turns off all
default labels. This property returns true if
any default labels are visible and false if
no default labels are visible.

font HiQ Font Defines the font that displays the vector
labels.

row(n) Text Defines the text of the label for the values at
row index n. n must be an Integer scalar
greater than zero but can exceed the number
of rows in the matrix.

row.default.
visible

Boolean Turns on default row labels when set to
true . When false , this property turns off
default row labels.

row.user.
visible

Boolean Turns on user row labels when set to true .
When false , this property turns off user
row labels.

row.visible Boolean Turns on row labels when set to true . When
false , this property turns off row labels.
This property returns true if any row labels
are visible and false if no row labels are
visible.

Table 4-3. Numeric Matrix Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-17 HiQ Reference Manual

labels.
(continued)

user.visible Boolean Turns on all user labels when set to true .
When false , this property turns off all user
labels. This property returns true if any
user labels are visible and false if no user
labels are visible.

visible Boolean Turns on all user and default labels when set
to true . When false , this property turns
off all user and default labels. This property
returns true if any labels are visible and
false if no labels are visible.

rows Integer Defines the number of rows in the matrix,
which must be greater than zero.

size Integer Vector Defines the dimensions of the matrix in a
two element vector. The first element is the
number of rows, and the second element is
the number of columns.

storage HiQ Constant Specifies the underlying storage for the
matrix. Valid values include
<rect >
<upperTri >
<lowerTri >
<band >
<symmetric >
<hermitian >

type HiQ Constantb Returns the type of the object. (Read Only)

Table 4-3. Numeric Matrix Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-18 © National Instruments Corporation

type. numeric HiQ Constant Defines the type of element stored in the
numeric object. (Read Only) Valid values
include
<integer >
<real >
<complex >

object HiQ Constant Defines the type of numeric object.
(Read Only) Valid values include
<scalar >
<vector >
<matrix >
<polynomial >

Integer Properties

base HiQ Constant Defines the base used to display the value of
the object. Valid values include
<decimal >
<binary >
<binaryB >
<octal >
<octal0 >
<octalO >
<hexadecimal >
<hexidecimal0x >
<hexidecimalDollar >
<hexadecimalH >

digits Integer Defines the minimum number of digits to
display. (Valid range: 1–32)

Table 4-3. Numeric Matrix Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-19 HiQ Reference Manual

Real Properties

decimalPlaces Integer Defines the number of decimal places to
display. If the value is negative, the absolute
value defines the number of decimal places
to display and trailing zeros are removed.

exponentialDigits Integer Defines the number of exponential digits to
display. (Valid range: 1–3)

format HiQ Constant Defines the real display format to use.
Valid values include
<real >
<scientific >
<engineering >

ComplexReal Properties

complexFormat HiQ Constant Defines the complex mode used to display
the value. Valid values include
<sumI >
<sumJ>
<pair >
<degrees >
<radians >
<gradians >

i Real Matrix Defines the complex part of the matrix. The
dimensions of the matrix must be the same
as the current matrix.

Table 4-3. Numeric Matrix Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-20 © National Instruments Corporation

imaginary. decimalPlaces Integer Defines the number of decimal places to
display for the imaginary part of the number.
If the value is negative, the absolute value
defines the number of decimal places to
display and trailing zeros are removed.

exponential
Digits

Integer Defines the number of exponential digits to
display for the imaginary part of the number.
(Valid range: 1–3)

format HiQ Constant Defines the real display format to use for the
imaginary part of the number. Valid values
include
<real >
<scientific >
<engineering >

r Real Matrix Defines the real part of the matrix. The
dimensions of the matrix must be the same
as the current matrix.

real. decimalPlaces Integer Defines the number of decimal places to
display for the real part of the number. If the
value is negative, the absolute value defines
the number of decimal places to display and
trailing zeros are removed.

exponential
Digits

Integer Defines the number of exponential digits to
display for the real part of the number.
(Valid range: 1–3)

format HiQ Constant Defines the real display format to use for the
real part of the number. Valid values include
<real >
<scientific >
<engineering >

a. For a complete list of HiQ Constants for border, see Table B-2, Border Style Constants, in Appendix B, HiQ Constants.

b. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 4-3. Numeric Matrix Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-21 HiQ Reference Manual

Numeric Polynomial Objects
Unlike scalars, vectors, and matrices, Polynomial objects are either real or
complex, not integer. Polynomial objects can represent up to a 1024 degree
polynomial. Polynomial coefficients are either all real numbers or all
complex numbers, each having the same characteristics as a scalar of the
same type.

You can use polynomials as any other numeric objects with respect to HiQ
built-in operators. For example, you can multiply or add two polynomials
as you would two matrices. You also can evaluate a polynomial at a specific
value.

To create a polynomial from script, use the polynomial initializer syntax.
The following syntax creates the polynomial x2 + 2x + 1.

MyPolynomial = {poly: “x^2 + 2x + 1”};

You can evaluate a polynomial as you would a function. The following code
places the value of MyPolynomial , evaluated at x = 4, into result .

result = MyPolynomial(4);

Table 4-4. Numeric Polynomial Properties

Property Data Type Description

background.color HiQ Color Defines the background color of object
views.

border. color HiQ Color Defines the border color of object views.

style HiQ Constanta Defines the border style of object views.

cell. color HiQ Color Defines the text color that displays the value
of the object.

font HiQ Font Defines the font that displays the value of
the polynomial.

width Real Defines the number of visible characters.
(Valid range: 1.0–99.99)

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-22 © National Instruments Corporation

degree Integer Specifies the degree of the polynomial.
(Read Only)

exponent.style HiQ Constant Defines that style in which exponents are
displayed. Valid values include
<raised >
<caret >
<fortran >

justify HiQ Constant Defines polynomial justification.
Valid values include
<left >
<right >

type HiQ Constantb Returns the type of the object. (Read Only)

type. numeric HiQ Constant Defines the type of element stored in
the numeric object. (Read Only)
Valid values include
<integer >
<real >
<complex >

object HiQ Constant Defines the type of numeric object.
(Read Only) Valid values include
<scalar >
<vector >
<matrix >
<polynomial >

Table 4-4. Numeric Polynomial Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-23 HiQ Reference Manual

Real Properties

decimalPlaces Integer Defines the number of decimal places to
display. If the value is negative, the absolute
value defines the number of decimal places
to display and trailing zeros are removed.

exponentialDigits Integer Defines the number of exponential digits to
display. (Valid range: 1–3)

format HiQ Constant Defines the real display format to use.
Valid values include
<real >
<scientific >
<engineering >

Complex Properties

complexFormat HiQ Constant Defines the complex mode used to display
the value. Valid values include
<sumI >
<sumJ>
<pair >
<degrees >
<radians >
<gradians >

imaginary. decimalPlaces Integer Defines the number of decimal places to
display for the imaginary part of the number.
If the value is negative, the absolute value
defines the number of decimal places to
display and trailing zeros are removed.

exponential
Digits

Integer Defines the number of exponential digits to
display for the imaginary part of the number.
(Valid range: 1–3)

format HiQ Constant Defines the real display format to use for the
imaginary part of the number.
Valid values include
<real >
<scientific >
<engineering >

Table 4-4. Numeric Polynomial Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-24 © National Instruments Corporation

real. decimalPlaces Integer Defines the number of decimal places to
display for the real part of the number. If the
value is negative, the absolute value defines
the number of decimal places to display and
trailing zeros are removed.

exponential
Digits

Integer Defines the number of exponential digits to
display for the real part of the number.
(Valid range: 1–3)

format HiQ Constant Defines the real display format to use for the
real part of the number. Valid values include
<real >
<scientific >
<engineering >

a. For a complete list of HiQ Constants for border, see Table B-2, Border Style Constants, in Appendix B, HiQ Constants.

b. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 4-4. Numeric Polynomial Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-25 HiQ Reference Manual

Text Objects
Text objects store an array of character values. Consider HiQ Text objects
as vectors that store characters. To create a Text object, assign a string to
any object. For example, you can create a Text object containing the string
Hello .

MyText = “Hello”;

You can access individual characters with the subscript operator and
concatenate two Text objects with the addition operator. For example, the
following script creates a Text object named Result that contains the
string Hello World .

Text1 = “Hello “;

Text2 = “World”;

Result = Text1 + Text2;

You can convert Numeric objects to Text objects with the toText built-in
function. The toNumeric function converts a Text object to a Numeric
object.

Table 4-5. Text Object Properties

Property Data Type Description

background.color HiQ Color Defines the background color of object
views.

border. color HiQ Color Defines the border color of object views.

style HiQ Constanta Defines the border style of object views.

font HiQ Font Defines the font used when displaying the
text.

font.color HiQ Color Defines the font color that displays the text.

length Integer Specifies the number of characters in the
Text object. (Read Only)

type HiQ Constantb Returns the type of the object. (Read Only)

a. For a complete list of HiQ Constants for border, see Table B-2, Border Style Constants, in Appendix B, HiQ Constants.

b. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-26 © National Instruments Corporation

Script Objects
Use Script objects to write your own HiQ-Script programs. Inside
HiQ-Script, you can initialize a script, convert a script to text, or save a
script to a file. You also can access script properties from HiQ-Script.

Table 4-6. Script Object Properties

Property Data Type Description

autoIndent Boolean Turns auto indent on when set to true .
When false , this property turns auto
indent off.

background.color HiQ Color Defines the background color of object
views.

bifFont HiQ Font Defines the font that displays built-in
function names.

bifFont.color HiQ Color Defines the font color that displays built-in
function names.

border. color HiQ Color Defines the border color of object views.

style HiQ Constanta Defines the border style of object views.

commentFont HiQ Font Defines the font that displays comments.

commentFont.color HiQ Color Defines the font color that displays
comments.

constantFont HiQ Font Defines the font that displays HiQ constants.

constantFont.color HiQ Color Defines the font color that displays HiQ
constants.

keywordFont HiQ Font Defines the font that displays HiQ
keywords.

keywordFont.color HiQ Color Defines the font color that displays HiQ
keywords.

scriptFont HiQ Font Defines the font that displays script text.

scriptFont.color HiQ Color Defines the font color that displays
script text.

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-27 HiQ Reference Manual

syntaxHighlighting Boolean Performs syntax highlighting when set to
true . When syntax highlighting is not
active, all text is displayed in the script font.

type HiQ Constantb Returns the type of the object. (Read Only)

a. For a complete list of HiQ Constants for border, see Table B-2, Border Style Constants, in Appendix B, HiQ Constants.

b. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 4-6. Script Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-28 © National Instruments Corporation

Color Objects
Use Color objects to represent a color in HiQ-Script. Often, you might use
Color objects to manipulate object properties. To create a color from script,
use the color initializer syntax. For example, you can create a dark red
color.

MyRed = {color: 128, 0, 0};

You can create medium-green and blue colors as well.

MyGreen = {color: 0, 200, 0};

MyBlue = {color: 0, 0, 200};

You can specify color components ranging from 0 to 255. If you specify a
value larger than 255, the value defaults to 255.

Note You cannot view Color objects on the Notebook page.

Table 4-7. Color Object Properties

Property Data Type Description

red Integer Defines the red component of
the color. Any values greater
than 255 default to 255.

green Integer Defines the green component
of the color. Any values greater
than 255 default to 255.

blue Integer Defines the blue component of
the color. Any values greater
than 255 default to 255.

type HiQ Constanta Returns the type of the object.
(Read Only)

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in
Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-29 HiQ Reference Manual

Font Objects
Use Font objects to represent a font in HiQ-Script. Often, you use Font
objects to manipulate object properties. To create a font from script, use the
font initializer syntax. For example, you can create a 10-point Courier
New font.

MyFont = {font: “Courier New”, 10};

If you specify an unavailable font, a similar font is substituted.

Note You cannot view Font objects on the Notebook page.

Table 4-8. Font Object Properties

Property Data Type Description

bold Boolean Bolds the font when set to
true . When false , this
property displays the font at its
normal weight.

italic Boolean Italicizes the font when set
to true .

name Text Defines the font name.

size Integer Defines font size in points.

strikeout Boolean Strikes out characters when set
to true .

type HiQ Constanta Returns the type of the object.
(Read Only)

underline Boolean Underlines characters when set
to true .

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in
Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-30 © National Instruments Corporation

Function Objects
Use Function objects to define your own functions. Function objects are
compiled versions of functions you write in HiQ-Script. You can call a
Function object from script.

B = myFunction();

To create a function during script execution, use the function initializer
syntax. For example, you can create a function that squares its parameter.

MyFunc = {function: x: “x^2”};

You then can call this function as you would any other function.

XSquared = MyFunc(x);

Note You cannot view Function objects on the Notebook page.

Table 4-9. Function Object Properties

Property Data Type Description

type HiQ Constanta Returns the type of the object.
(Read Only)

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in
Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-31 HiQ Reference Manual

ActiveX Objects
ActiveX objects include any object that you insert in your Notebook with
the Edit»Insert Object command. You cannot create an ActiveX object
programmatically, nor can you use an ActiveX object on the right side of a
simple assignment statement. If the ActiveX object has an automation
interface, you can access its properties and methods using DOT notation.

For more information about ActiveX objects and accessing their
automation interface, see Chapter 1, ActiveX Connectivity.

Table 4-10. ActiveX Object Properties

Property Data Type Description

type HiQ Constanta Returns the type of the object.
(Read Only)

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in
Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-32 © National Instruments Corporation

ActiveX Control Objects
ActiveX Control objects include any object that you insert in your
Notebook with the Edit»Insert Control command. You cannot create an
ActiveX Control object programmatically, nor can you use an ActiveX
Control object on the right side of a simple assignment statement. If the
ActiveX Control object has an automation interface, you can access its
properties and methods using DOT notation.

For more information about ActiveX Control objects and accessing their
automation interface, see Chapter 1, ActiveX Connectivity.

Table 4-11. ActiveX Control Object Properties

Property Data Type Description

type HiQ Constanta Returns the type of the object.
(Read Only)

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in
Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-33 HiQ Reference Manual

ActiveX Interface Objects
ActiveX Interface objects represent ActiveX interfaces. You can create
ActiveX Interface objects using the createInterface built-in function
or by calling an automation interface method that returns an ActiveX
Interface.

You cannot view ActiveX Interface objects on the Notebook page, and
ActiveX Interface objects are not saved with the Notebook.

Table 4-12. ActiveX Interface Object Properties

Property Data Type Description

type HiQ Constanta Returns the type of the object.
(Read Only)

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in
Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-34 © National Instruments Corporation

HiQ Constant Objects
HiQ Constant objects represent constants in HiQ-Script. You create HiQ
Constant objects when you assign a HiQ constant to an object. For
example, the following syntax creates a HiQ Constant object with the value
<line> .

myConstant = <line>;

Although HiQ Constant objects and numeric constants both use angle
brackets, they behave very differently. Numeric constants, such as <pi>, are
short-hand representations of other objects (in this case, a real scalar with
the value of pi). These numeric constants are not HiQ Constant objects.

Note Do not use HiQ Constant objects in arithmetic expressions.

You cannot view HiQ Constant objects on the Notebook page.

Table 4-13. HiQ Constant Object Properties

Property Data Type Description

type HiQ Constanta Returns the type of the object.
(Read Only)

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in
Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-35 HiQ Reference Manual

Untyped Objects
An Untyped object is an object that has never been given a value. Once you
assign an object a value, the object is no longer untyped and can never be
untyped again. You can assign a value to an Untyped object by assigning a
value to it or by setting its type property.

Consider the following syntax example. In line 1, A has not been assigned
a value, so its type is <untyped> and B becomes a HiQ Constant object
with the value <untyped> . In line 2, A is assigned the value 5 and becomes
an integer scalar object (no longer untyped). In line 3, C becomes a HiQ
Constant object with the value <integer> .

B = A.type; //line 1

A = 5; //line 2

C = A.type; //line 3

Table 4-14. Untyped Object Properties

Property Data Type Description

type HiQ Constanta Returns the type of the object.
You can set this property to any
HiQ Type Constant and the
object changes to the specified
type.

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in
Appendix B, HiQ Constants.

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-36 © National Instruments Corporation

Graph Objects
Two types of Graph objects exist in HiQ: 2D graphs and 3D graphs. Graphs
do not contain data, but they contain plots that contain data. Use graphs to
visually display a numeric set of data on the Notebook page.

For more information about graphs and their use, see Chapter 3, Using HiQ
Graphics.

Table 4-15. Graph Object Properties

Property Data Type Description

axes.property Sets properties for all axes at the same time.
Replace property with the property you are
setting or getting. See Table 4-16, Axis
Properties, for a list and description of axes
properties.

axis. x.property Provides access to an x-axis property.
Replace property with the property you are
setting or getting. See Table 4-16, Axis
Properties, for a list and description of axes
properties.

xy.property Sets both the x- and y-axis property at the
same time. Replace property with the
property you are setting or getting. See
Table 4-16, Axis Properties, for a list and
description of axes properties.

xyz.property Sets properties of the x-, y-, and z-axes at
the same time (3D only). Replace property
with the property you are setting or getting.
See Table 4-16, Axis Properties, for a list
and description of axes properties.

xz.property Sets properties of both the x- and z-axis at
the same time (3D only). Replace property
with the property you are setting or getting.
See Table 4-16, Axis Properties, for a list
and description of axes properties.

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-37 HiQ Reference Manual

axis.
(continued)

y(n).property Provides access to a property on any of the
y-axes. Replace n with a comma separated
list of axis index, a single index value, or a
vector containing y-axis indexes. When
getting a value, you can specify only one
axis. Replace property with the property
you are setting or getting. See Table 4-16,
Axis Properties, for a list and description of
axes properties.

y.property Provides access to a y-axis property (in 2D
graphs, the primary y-axis). Replace
property with the property you are setting
or getting. See Table 4-16, Axis Properties,
for a list and description of axes properties.

yz.property Sets properties of both the y- and z-axis at
the same time. Replace property with the
property you are setting or getting. See
Table 4-16, Axis Properties, for a list and
description of axes properties.

z.property Provides access to a z-axis property (3D
only). Replace property with the property
you are setting or getting. See Table 4-16,
Axis Properties, for a list and description of
axes properties.

background. border.color HiQ Color Defines the border color of the
background area.

border.style HiQ Constanta Defines the border style of the
background area.

color HiQ Color Defines the background color of the graph.

border. color HiQ Color Defines the color of the graph border.

style HiQ Constanta Defines the style of the graph border.

Table 4-15. Graph Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-38 © National Instruments Corporation

frame. color HiQ Color Defines the color of the frame area.

visible Boolean Displays the frame area of the graph when
set to true . The frame area includes the
area of the graph, which is filled with the
frame color and the graph title.

legend. backColor HiQ Color Defines the background color of the legend.

border.color HiQ Color Defines the border color of the legend.

border.style HiQ Constanta Defines the border style of the legend.

font HiQ Font Defines the font of the legend.

includeUntitled Boolean Defines which plots are included in the
legend.

true —Shows all plots in the legend.

false —Shows only plots that have a title
currently defined.

textColor HiQ Color Defines the text color of the legend.

visible Boolean Displays the legend when set to true .

plot(n).property Provides access to the properties of an
embedded plot. Replace n with the handle
of the desired plot and property with the
property you are setting or getting.

plots.property Sets the properties of all embedded plots.
Replace property with the property you are
setting or getting.

title Text Defines the title of the graph.

title. color HiQ Color Defines the text color of the graph title.

visible Boolean Displays the graph title when set to true .

type HiQ Constantb Returns the type of the object. (Read Only)

Table 4-15. Graph Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-39 HiQ Reference Manual

3D Properties (Valid for 3D Graphs)

dither Boolean Defines the dither mode of the graph.

true —Dithering is enabled. Combinations
of colors are used to approximate selected
colors that cannot be directly displayed
because of a limited number of display
colors on the system.

false —Dithering is disabled.

Note: This property is valid on 256-color
displays only.

fastDraw Boolean Defines how the graph is drawn during
interactive operations such as rotating,
zooming, and panning.

true —Draws a reduced representation of
the graph and its plots.

false —Draws the entire graph and its
plots. Using this mode can create
unresponsive interaction for complex
graphs.

grid. frameColor HiQ Color Defines the color of the grid frame.

smoothing Boolean Defines the smoothing mode for grid lines.

true —Uses a technique called
anti-aliasing to create smoother grid lines.

false —Draws grid lines without
smoothing.

xy Boolean Draws the X-Y grid plane when true .

xz Boolean Draws the X-Z grid plane when true .

yz Boolean Draws the Y-Z grid plane when true .

Table 4-15. Graph Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-40 © National Instruments Corporation

lights.property Sets the properties of all lights. See
Table 4-17, Graph Light Properties, for a
list and description of light properties.

light(n).property Provides access to the properties of a single
light. Replace n with the index of the light,
ranging from 1–4. See Table 4-17, Graph
Light Properties, for a list and description
of light properties.

lighting. ambientColor HiQ Color Defines the ambient light color for the
graph when lighting is enabled.

enable Boolean Enables graph lighting when true .

projectionStyle HiQ Constant Defines the projection style of the graph.
Valid values include
<orthographic >
<perspective >

smoothing Boolean Defines the smoothing mode for drawing
plots on the graph.

true —Uses a technique called
anti-aliasing to create smoother lines and
polygons when drawing plots.

false —Draws plots without smoothing.

view. autoDistance Boolean Defines how the viewing distance is set.

true —Viewing distance is automatically
calculated.

false —Viewing distance is defined by the
view.distance property.

distance Real Specifies the distance of the viewing
position from the origin.

latitude Real Defines the latitude of the viewing position
when the view.mode property is
<viewUserDefined >.

Table 4-15. Graph Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-41 HiQ Reference Manual

view.
(continued)

longitude Real Defines the longitude of the viewing
position when the view.mode property is
<viewUserDefined >.

mode HiQ Constant Defines the viewing position of the graph.
Valid values include
<viewXYPlane >
<viewxzPlane >
<viewyZPlane >
<viewUserDefined >

a. For a complete list of HiQ Constants for border, see Table B-2, Border Style Constants, in Appendix B, HiQ Constants.

b. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 4-16. Axis Properties

Property Data Type Description

label. color HiQ Color Defines the color for the axis labels.

decimalPlaces Integer Defines the number of decimal places to
display for the axis labels. Valid values
include <auto > and the range 0–15.

font HiQ Font Defines the font for the axis labels.

format HiQ Constant Defines the format of the labels.
Valid values include
<decimal >
<scientific >
<engineering >

normal Boolean Draws the labels at the normal axis position
when true .

opposite Boolean Draws the labels at the opposite axis
position when true .

Table 4-15. Graph Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-42 © National Instruments Corporation

majorGrid. color HiQ Color Defines the color of the major grid lines.

divisions Integer Defines the number of major grid divisions
the axis contains. Valid values include
<auto > and the range 1–100.

insideTick Boolean Draws the tick marks on the inside of the
axis when set to true .

normalTick Boolean Draws tick marks at the normal axis
location when set to true .

oppositeTick Boolean Draws tick marks at the opposite axis
location when set to true .

outsideTick Boolean Draws the tick marks on the outside of the
axis when set to true .

visible Boolean Draws the major grid lines when true .

minorGrid. color HiQ Color Defines the color of the minor grid lines.

divisions Integer Defines the number of minor grid divisions
between each major grid division.
(Valid values: 1–100)

insideTick Boolean Draws tick marks on the inside of the axis
when true .

normalTick Boolean Draws the tick marks at the normal axis
location when true .

oppositeTick Boolean Draws the tick marks at the opposite axis
location when true .

outsideTick Boolean Draws tick marks on the outside of the axis
when true .

visible Boolean Draws the minor grid lines when true .

Table 4-16. Axis Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-43 HiQ Reference Manual

range. inverted Boolean Draws an inverted axis, starting with the
minimum value and ending with the
maximum value when this property is set to
true . When false , this property draws
the axis normally, starting with the
maximum value and proceeding to the
maximum value.

max Real Defines the maximum value of the axis.

min Real Defines the minimum value of the axis.

mode HiQ Constant Specifies the range mode of the axis, which
defines how to compute the range of the
axis. Valid values include

<auto >—Computes the minimum and
maximum values for the axis based on the
extents of the plots.

<manual >—Uses the values of the
range.min and range.max properties to
define the range.

scaling.mode HiQ Constant Defines the scaling of the axis. Axes can be
scaled either linearly or logarithmically.
Valid values include
<linear >
<log >

title Text Defines the title of the axis.

Table 4-16. Axis Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-44 © National Instruments Corporation

title. color HiQ Color Defines the color of the axis title.

font HiQ Font Defines the font of the axis title.

normal Boolean Draws the title at the normal axis position
when true .

opposite Boolean Draws the title at the opposite axis position
when true .

visibility HiQ Constant Defines the axis visibility. Valid values
include
<on>—Always visible.
<off >—Never visible.
<auto >—Drawn if the axis has an
associated plot.

Table 4-17. Graph Light Properties

Property Data Type Description

attenuation HiQ Constant Defines the attenuation style of the light
source. Valid values include <none >,
<linear >, and <quadratic >.

color HiQ Color Defines the color of the light source.

distance Real Defines the distance of the light source
from the origin of the graph.

enable Boolean Enables light when set to true .

latitude Real Defines the latitudinal position of the light
source.

longitude Real Defines the longitudinal position of the
light source.

Table 4-16. Axis Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-45 HiQ Reference Manual

Plot Objects
Two types of Plot objects exist in HiQ: 2D plots and 3D plots. Graphs
contain plots, and plots contain the data that is actually graphed. You can
view plots by placing them on graphs only.

Table 4-18. Plot Object Properties

Property Data Type Description

fill.color HiQ Color Defines the fill color of the plot if you define
the style as a filled plot. Filled plot styles
include
<verticalBar >
<horizontalBar >
<surface >
<surfaceLine >
<surfaceNormal >
<surfaceContour >

line. color HiQ Color Defines the line color of the plot.

style HiQ Constant Defines the line style of the plot.
Valid values include
<solidLine >
<dotLine >
<dashLine >
<dotDashLine >

If you set this property to anything other
than <solidLine >, the line width is set
to zero.

width Real Defines the width of the line in points. If the
value is greater than zero, the line style is set
to <solidLine >. If you specify a zero line
width, the line appears as narrow as possible
while still remaining visible. (Valid Range:
0–100)

numGraphs Integer Returns the number of graphs displaying the
plot. (Read Only)

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-46 © National Instruments Corporation

point. color HiQ Color Defines the color of the points of the plot.

frequency Integer Defines the frequency of points in the plot.
For example, a frequency of one indicates
that all points should be drawn. A frequency
of two indicates that every other point
should be drawn. This value must be greater
than zero.

size Real Defines the size of the plot points in points.
(Valid range: 0–100)

style HiQ Constant Defines the style of the point. Valid values
include
<emptySquare >
<solidSquare >
<emptyCircle >
<solidCircle >
<diamond >
<asterisk >
<boldX >
<noPoint >

The following values are valid for 3D plots:
<wireframeSphere >
<solidSphere >
<wireframeCube >
<solidCube >

Table 4-18. Plot Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-47 HiQ Reference Manual

style HiQ Constant Defines the style of the plot. Valid values for
2D plots include
<point >
<line >
<linePoint >
<verticalBar >
<horizontalBar >

Valid values for 3D surface plots include
 <point >
<line >
<hiddenLine >
<contour >
<surface >
<surfaceLine >
<surfaceNormal >
<surfaceContour >

Valid values for 3D curve plots include
<point >
<line >

title Text Defines the plot title. This title appears in
the legend and on the graph.

title. color HiQ Color Defines the color of the title displayed on the
graph, not in the legend.

font HiQ Font Defines the font of the plot title displayed on
the graph, not in the legend.

visible Boolean Displays the title on the graph when true .

type HiQ Constanta Returns the type of the object. (Read Only)
This property is valid for Plot objects only.

visible Boolean Displays the plot on its graphs when set
to true .

Table 4-18. Plot Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-48 © National Instruments Corporation

2D Properties (Valid for 2D Plots)

coordinateSystem HiQ Constant Defines the coordinate system of the plot.
Valid values include
<cartesian >
<polar >

line.interpolation HiQ Constant Specifies the interpolation style used to
draw the line of the plot. Valid values
include

<linear >—Draws the plot point-to-point.

<cubicSpline >—Draws the plot with
bezier curves that pass through each point.

yAxis Integer Defines the index of the y-axis with which
the plot is associated. (Valid range: 1–8)

3D Properties (Valid for 3D Plots)

cacheData Boolean Improves drawing performance by caching
intermediate calculations when set to true .
However, you use more memory in the
process. When false , the plot does not
cache intermediate calculations, which
reduces memory usage.

colorMap.style HiQ Constant Defines the color map used by the plot.
Valid values include
<none >
<shaded >
<grayscale >
<spectrum >

contour(n).property Provides access to the properties of a
single contour of the plot. See Table 4-19,
Plot Contour Properties, for a list and
description of contour properties.

Table 4-18. Plot Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-49 HiQ Reference Manual

contour. anchor.enable Boolean Enables the contour anchor if true . The
anchor defines a value that a contour is
guaranteed to pass through.

anchor.value Real Defines the value of the contour anchor.

basis HiQ Constant Defines the basis of the plots contours.
Valid values include

<magnitude >—Contours based on the
magnitude data, if specified. Otherwise,
contours based on the Z data.

<x>—Contours based on X data.

<y>—Contours based on Y data.

<z>—Contours based on Z data.

interval Integer Defines the distance between each level of
the contour. When you set this value, the
number of levels adjusts to accommodate
the new interval.

levelList Real Vector Defines the contour levels of the plot. Each
element of the vector contains the position
of a contour.

levels Integer Defines the number of contour levels for
the plot.

contours.property Sets the properties of all plot contours at the
same time. See Table 4-19, Plot Contour
Properties, for a list and description of
contour properties.

Table 4-18. Plot Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

HiQ Reference Manual 4-50 © National Instruments Corporation

coordinateSystem HiQ Constant Defines the coordinate system of the plot.
Valid values include
<cartesian >
<cylindrical >
<spherical >

fill.style HiQ Constant Defines the fill style of the plot. Valid values
include
<smooth >
<flat >

projection. xy Boolean Draws the X-Y plane projection of the plot
when true .

xz Boolean Draws the X-Z plane projection of the plot
when true .

yz Boolean Draws the Y-Z plane projection of the plot
when true .

showProjectionsOnly Boolean Defines the show projections only mode.

true —Draws all projections that are
currently enabled but does not draw the plot.

false —Draws all projections that are
currently enabled and draws the plot.

transparency Integer Indicates the percentage of transparency,
where a value of 0 specifies opaque and
100 specifies completely transparent.

a. For a complete list of HiQ Constants for type, see Table B-1, Object Type Constants, in Appendix B, HiQ Constants.

Table 4-18. Plot Object Properties (Continued)

Property Data Type Description

Chapter 4 HiQ Objects and Object Properties

© National Instruments Corporation 4-51 HiQ Reference Manual

Table 4-19. Plot Contour Properties

Property Data Type Description

color HiQ Color Defines the color of the contour line.

label Text Labels the contour. If the text contains a
%value , the value of the level is substituted
for the %value tag. If the text contains a
%level , the level number is substituted for
the %level tag.

label. color HiQ Color Defines the color of the contour label.

decimalPlaces Integer Defines the number of decimal places used
to format the contour label.

font HiQ Font Defines the font of the contour label.

format HiQ Constant Defines the contour label format.
Valid values include
<decimal >
<scientific >
<engineering >

visible Boolean Draws the contour label when true .

level Real Defines the position of the plot.

style HiQ Constant Defines the line style of the contour line.
Valid values include
<solidLine >
<dotLine >
<dashLine >
<dotDashLine >

width Real Defines the width of the contour line in
points. (Valid range: 0–100)

© National Instruments Corporation 5-1 HiQ Reference Manual

5
HiQ-Script Basics

This chapter introduces HiQ-Script, the built-in scripting language that you
can use to build algorithms you need to solve your problems. Although
HiQ-Script and its usages are demonstrated in Script objects, you also can
use all the scripts in this chapter in the HiQ Command Window.

Although previous experience with programming languages is useful,
it is not necessary. HiQ-Script draws from the most useful features of
FORTRAN, Pascal, and C. In some ways, HiQ-Script is similar to
pseudocode commonly used in algorithm descriptions, yet you can compile
and run HiQ-Script.

To effectively program in HiQ-Script, you should be familiar with basic
programming concepts as they apply to HiQ. This chapter introduces the
following concepts:

• HiQ-Script

• Naming Conventions

• Script Objects

• Comments

• Expressions

• Assignment Statements

• Numeric Objects

• User Functions

• Object Scope

• Flow Control and Looping

You can find more detailed information about HiQ-Script syntax in
Chapter 6, HiQ-Script Reference.

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-2 © National Instruments Corporation

HiQ-Script
With HiQ-Script, you can manipulate objects in a Notebook, control HiQ
behavior, and when you are using ActiveX, control other applications. The
Command Window and the Script object offer interfaces to HiQ-Script.
The Command Window immediately executes a single statement of
HiQ-Script and returns the results. A Script object contains a single
statement or a series of statements that execute on command to perform
specific tasks. Use Script objects to write custom algorithms that process
data exactly the way you want it processed.

Unlike traditional programming languages, HiQ-Script does not require
you to declare objects, allocate memory, or size objects before using them.
Because HiQ-Script was engineered to eliminate these difficult tasks, you
can concentrate on the real power of HiQ-Script—analysis and
manipulation of your data.

When writing HiQ-Script, you are creating a series of commands to control
HiQ objects. HiQ objects are the fundamental entities in HiQ. Examples of
HiQ objects include Numeric, Graph, Text, and Script objects. Each object
is designed to meet a particular data analysis and visualization need.

Numeric objects hold data you are analyzing and the values that your
algorithms generate. HiQ Graph and Text objects let you visualize data.
A Script object holds the HiQ-Scripts that you write. The Script object is
essentially a text editor, similar to Notepad, with added features to help you
write your scripts. For information about HiQ objects, see Chapter 4,
HiQ Objects and Object Properties.

Because HiQ-Script is a typeless language, you do not need to declare an
object or define its type before using it. By assigning a value of a different
type to an object, you change the type of that object.

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-3 HiQ Reference Manual

Naming Conventions
To name an object in HiQ-Script, you can use all letters of the alphabet
(both uppercase and lowercase), digits (0–9), and the underscore (_).
Object names must start with a letter or an underscore.

Note Because all names with two or more consecutive underscores are reserved by HiQ,
you cannot use them when writing your programs.

All object and function names must be unique. All names are case-sensitive
in HiQ-Script (except for names of built-in functions, keywords, and
constants). For example, the object a and the object A are two unique
objects.

The names of built-in HiQ functions, keywords, and constants are not
case-sensitive. For example, HiQ recognizes a call to the cos built-in
function whether your HiQ-Script calls cos , Cos, COS, or even cOs.

Script Objects
A Script object contains a single statement or a series of statements that
execute on command. To increase performance, HiQ-Script compiles to a
pseudocode that is then executed.

To place a Script object on the Notebook page, select the Script tool from
the toolbar and use your mouse to drag out a rectangle on the page. After
creating the Script object, you can enter HiQ-Script. When the Script object
view is active, you see a flashing caret. If the Script is not active, click on
it. Type the following HiQ-Script.

a = sin(1.0);

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-4 © National Instruments Corporation

Figure 5-1 shows the active Script object placed on the Notebook page.

Figure 5-1. Active Script Object on the Notebook Page

Compiling Your Script
Right click on the script and select Compile from the popup menu. If
entered correctly, the script successfully compiles. If you get a message in
the Compile Error window, verify that you correctly typed the command
and try compiling again.

Because HiQ automatically compiles a script before executing it, you do
not have to manually compile a script. However, it is useful to help you find
syntax errors as you write your HiQ-Script.

Note HiQ compiles scripts automatically before they are executed.

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-5 HiQ Reference Manual

While compiling the script, HiQ creates a new object that represents the
executable pseudocode. This object is called a function object. You can
distinguish function object names from their corresponding script objects
by the _Run attached at the end of the function object name.

Running Your Script
Right click on the Script and select Run from the popup menu. HiQ
compiles and executes the lines in your script object. In this case, HiQ
computes the sin of 1.0 and assigns the result to a new object a.

The Object List in the HiQ Explorer now contains two objects, a and
Script_1 . Script_1 is the Script object, and a is the new object that was
generated by running the script. Because function objects are filtered from
the Object List by default, the function object Script_1_Run is hidden.
You can view function objects in the Object List by right clicking on
Objects and choosing Objects»View»All.

Figure 5-2. Select Objects»View»All to View Function Objects

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-6 © National Instruments Corporation

Syntax Highlighting
To make your scripts more readable, HiQ can automatically highlight
syntax in your program. Right click on the script and select Properties
to edit its properties. On the View page, you can change the font and
font characteristics of the main script, comments, keywords, built-in
functions, and constants.

Comments
Use comments to annotate your script. Comments start with two forward
slashes (//). All text that appears on a line after two forward slashes is
treated as a comment. You can place a comment after HiQ-Script code.
All of the following comments are valid.

// This is the first comment.

a = 1; // This comment is after script code.

while a < 10 do

v[a] = myFunction(a); // Use comments to explain your

// script code.

end while;

Comments explain your code to others and also help you document your
algorithms.

Expressions
An expression is a combination of symbols—operands, or values, and
operators, such as +, -, *, and /—that represent a value. In HiQ, expressions
consist of objects, numeric values, operators, and function calls. The
following examples are valid expressions in HiQ.

3 + 4

3 + sin(3.14 + b)

sin(a) * cos(b) + c

Expressions cannot stand alone in HiQ-Script. In the following examples,
the expressions are assigned to objects, making them valid HiQ-Script
assignment statements.

a = 3.14;

b = 3 + sin(3.14 + b);

c = sin(a) * cos(b) + c;

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-7 HiQ Reference Manual

Because expressions evaluate to a given value, you can use expressions in
place of objects.

a = sin(x); // Evaluates the sin of a single object.

b = sin(x+y+2.5); // Evaluates the sin of an expression.

Expressions can be used only on the right side of an assignment statement.
The following examples are illegal assignment statements.

3 = sin(4); // illegal

sin(b) + sin(a) = cos(d); // illegal

Assignment Statements
The assignment statement is one of several types of statements in HiQ. It
consists of two parts. To the right of the equal sign is an expression. To the
left is the object to which you are assigning the expression. The following
assignment statement assigns the value of the expression to the object a.

a = sin(1.0);

The expression consists of a single function call to the trigonometric
function sin . The sin function is a HiQ built-in function.

You can call functions with the name of the function followed by the list of
function parameters enclosed in parentheses. The sin function has only
one parameter—the argument of the function—which is 1.0 in this case.
The sin function returns the sine of the argument, and the statement
assigns the result of the sine function to the object a.

Note Notice that HiQ statements end with a semicolon (;). A semicolon indicates that a
statement is complete. In HiQ, all statements end with a semicolon.

HiQ executes each statement in the order that it appears. Changes to an
object are reflected in the current statement. For example, the following two
statements are equivalent to the third statement.

a = sin(3.14);

B = sin(a);

B = sin(sin(3.14));

In the first example, the object a is assigned the result of the expression
sin(3.14) , and the object B is assigned the value of the expression
sin(a) . The second example achieves the same result in one statement by
assigning the sine of sin(3.14) to the value B.

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-8 © National Instruments Corporation

Numeric Objects
HiQ recognizes distinct numeric object types—scalars, vectors, matrices,
and polynomials—and manipulates them using common mathematical
syntax.

Because matrix and vector objects are linear algebra constructs, HiQ can
perform common linear algebra operations on them. For example, the
following script multiplies two matrices.

result = m1 * m2;

HiQ performs linear algebra matrix multiplication to complete this
operation. However, you can multiply two scalar objects using the same
syntax. HiQ knows how to complete the operation based on the type of the
objects. If m1 and m2 are scalars, HiQ performs scalar multiplication.

Creating Numeric Objects
HiQ creates a numeric object depending on how it is referenced in the
script. For example, if the object being assigned to is referenced with a
single subscript, HiQ creates a vector, as in the following example.

v[1] = 4; // v is a vector.

In this example, v is a one-element vector. If required, HiQ appropriately
sizes an object to make the assignment. For example, the following script
resizes the vector v to ten elements. A value of 8 is assigned to the tenth
element, elements two through nine are initialized to zero, and the first
element remains 4.

v[10] = 8;

Matrices behave the same way. The following script creates a matrix with
five rows and eight columns. The value in row 5, column 8 is 1.5. All other
elements are initialized to zero.

m[5,8] = 1.5;

You also can create vectors and matrices with built-in functions. The
built-in functions createVector and createMatrix create vectors and
matrices and initialize them. For example, the following statement creates
a random 10-by-10 matrix.

m = createMatrix(10, 10, <random>);

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-9 HiQ Reference Manual

Initializer Syntax
If you want to create a vector or matrix with predetermined values, use the
HiQ object initializer syntax. Object initializer syntax exists for most object
types. The following initializer syntax creates a vector containing the
values 1, 2, 3, and 4.

v = {vector: 1, 2, 3, 4};

In this assignment statement, the vector v is assigned the result of the
initializer, {vector: 1, 2, 3, 4} .

Initializer syntax begins with an opening curly brace ({) and continues with
the type of object to create, a colon (:), the value of the object, and finally
a closing brace (}).

The following initializer syntax creates a 2-by-2 matrix.

m = {matrix: 1, 2; 3, 4};

Matrix m is a two element-by-two element matrix. The element at 1,1 is 1
and the element at 1,2 is 2, and so on. To indicate that the object is
two-dimensional, use a semicolon (;) to mark the end of a row. Initializer
syntax is described for each object in Chapter 6, HiQ-Script Reference.

Note If the object type is missing in the initializer syntax, HiQ creates a matrix object.

Subscripts
Use the subscript operator ([]) to access a single element. For example, the
following syntax accesses the third element of the vector v .

v[3]

Because the subscript operator accepts any numeric value evaluating to
an integer greater than zero, you can place an expression inside the
subscript operator. Because vectors are one-dimensional, use a single index
value to specify an element in a vector. To access a single value in a
two-dimensional matrix object, specify the row index and the column
index, separated with a comma. For example, the following expression
accesses the element in the second row and third column of the matrix m.

m[2,3]

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-10 © National Instruments Corporation

The following examples use valid subscripts to access elements of matrices
and vectors.

v[6] = 12;

M[3,5] = v[7];

M[r,c] = m[2,3] + x;

M[4,5] = sin(v[1]) + cos(m[10,12]);

Subranges
Use subranges to access a subrange of a complete vector or matrix. A
subrange can be defined using two special operators—the colon (:) and the
asterisk (*). Consider the following four-element vector.

v = {vector: 1, 2, 3, 4};

v2 = v; // Make a copy of the entire vector.

w = v[1:3]; // Create an object with the first three

// elements of the vector v.

In the third line, the colon (:) and the subscript operator create a vector that
contains the elements of v starting at one and ending at three. The following
example creates a matrix using the first 2-by-2 elements of a matrix m.

m2 = m[1:2,1:2];

When you use the other subrange operator, * , you include either all
elements of the object or all remaining elements of the object, depending
on how you use it. For example, the following script creates a matrix, m2,
with the first two rows of a matrix m, including all of the columns.

m2 = m[1:2,*];

The following example creates a vector containing the elements of v
starting at 3 and continuing to the end.

v2 = v[3:*];

For more information about the subrange operators, see the Subrange
Operator section in Chapter 6, HiQ-Script Reference.

Polynomial Objects
Like vectors and matrices, polynomials can be created using the
createPoly function or with polynomial initializer syntax. For example,
the following script creates the polynomial x^2 + 2x + 1.

poly = {polynomial: "x^2 + 2x + 1"};

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-11 HiQ Reference Manual

Because polynomials are a built-in object type, HiQ-Script performs
polynomial algebra using the common algebraic operators. For example,
the following script adds two polynomials, p1 and p2 , and then multiplies
two polynomials.

p3 = p1 + p2;

p4 = p1 * p2;

Polynomials also behave like single-input, single-output functions.
For example, the following script evaluates a polynomial at the value 3.

result = p(3);

Type Conversion
Each of the numeric objects—scalars, vectors, matrices, and
polynomials—can have a numeric type of integer, real, or complex. HiQ
determines the numeric type of an object based on the expression creating
the object. For example, the following script creates an integer scalar.

x = 4;

The following script creates a real scalar.

x = 4.5;

HiQ uses the appropriate numeric type to compute an expression. For
example, the following script adds an integer scalar to a real scalar to
produce a real scalar.

x = 4;

y = 4.5;

z = x + y; // z is a real scalar.

HiQ provides built-in functions that force an object to a specific numeric
type. For example, the following script creates an integer scalar from a real
scalar.

x = toInteger(4.7); // x is an integer scalar.

You have two syntax options when referencing complex numbers. You can
use ordered pairs to create a complex number, as in the following example
where the real part is 3 and imaginary part is 2.

c = (3,2); // c is a complex scalar.

You also can use the HiQ constant <i >. The following script creates an
identical complex number.

c = 3 + 2 * <i>; // c is a complex scalar.

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-12 © National Instruments Corporation

Numeric Constants
Numeric constants are predefined values in HiQ-Script. All numeric
constants start with an open angle bracket (<) and end with a closed angle
bracket (>). You cannot change the value of a numeric constant, but you
can use a constant anywhere you use an expression, including within an
expression.

Examples of numeric constants include <pi >, <e>, and <i >. The
following assignment statements use valid numeric constants.

x = sin(<pi>);

y = sin(2 * <pi>);

z = 1 + <e>;

User Functions
You can create your own functions in HiQ-Script. Consider the following
example, which requires a value to be cubed many times.

A = (2*x + 3)^3;

B = (2*c + 3)^3;

D = (2*b + 3)^3;

Because these operations have to be executed many times, it is more
efficient to encapsulate the whole process in a user function. You only have
to define the function once, and then you can use it whenever you need it.

Writing a Function
You can define a function anywhere in a Script object, except within
another function definition. Functions begin with the keyword function
and end with the keywords end function . If the function returns values,
use the keyword return to specify which values to return.

For example, the following function myCubedFunc requires a single input,
cubes the input, and then returns the result.

function myCubedFunc(x)

result = (2*x + 3)^3;

return result;

end function;

To use your function, you must compile the Script object, which creates the
function object with the name of the function. In the preceding example,

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-13 HiQ Reference Manual

compiling the script creates a new function object named myCubedFunc
that you can call from other scripts.

Calling a Function
You can call user functions just as you would call built-in functions for
computing results.

A = myCubedFunc(x);

B = myCubedFunc(c);

D = myCubedFunc(b);

User functions are HiQ objects, and they behave just like other objects in
HiQ. User functions appear in the Object List of the Explorer. You can write
as many functions as you want within a single script, and you can call them
from any other script.

Structure of a Function
It is important to understand the parts of a function. Consider the following
user function.

function myFunc(x)

result = (2*x + 3)^3;

return result;

end function;

The function keyword indicates that you are starting a function. You can
name the function any valid HiQ object name. In this case, the function
name is myFunc. Following the function name is the parameter list. The
parameter list contains a comma-delimited list of object names. If the
function does not require parameters, do not include anything between the
parentheses.

The body of the function consists of any HiQ-Script statements that you
need for the function to compute. Although it is customary to indent the
body statements within a function, it is not required. One you finish writing
the function body, enter end function; to indicate that the function is
completely defined.

Return Statement
The return statement tells HiQ to exit the current function and return a
value from the function. This value is the result of calling the function. The
return does not need to be in the last line of the function, and it can return

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-14 © National Instruments Corporation

more than one object. For example, the following function returns two
objects, result1 and result2 .

function multi(x)

result1 = x^3;

result2 = x^4;

return result1, result2;

end function;

You can have the multi function return the first element, as in the
following example.

a = multi(3);

Or you can retrieve both elements returned from the function, as in the
following example.

[a,b] = multi(3);

To retrieve only the second item returned from the function, use a comma
as a placeholder for the first returned object.

[,b] = multi(3);

User Function Initialization Syntax
Using initializer syntax, you can define a new function dynamically while
your HiQ-Script program is running. Function initialization syntax
generally takes the following form.

myFct = {function: parameter_list:body };

The following example creates and uses a new function that takes one
parameter and returns a value.

body = "cos(x)*sinh(x)";

myFct = {function:x:body};

y = myFct(x);

The definition of the function myFct is not required before running the
script, as it is in the following example.

function myFct(x)

return cos(x)*sinh(y);

end function;

y = myFct(x);

This syntax gives you the flexibility to create new functions using Text
objects to define the script code. These Text objects can be placed on the

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-15 HiQ Reference Manual

Notebook page and changed by the user without having to edit a Script
object.

If the body of the function is more than one line, you must include a
return statement in the body, as in the following example.

body = "y[1] = -10*x[1] + 10*t;" + <CRLF>;

body = body + "y[2] = -5*x[2] + 5*t;" + <CRLF>;

body = body + "return y;";

myFct = {function:x,t:body};

Object Scope
Objects created in a user function are local to that function. No other
functions or HiQ-Script can access them. HiQ assumes that all objects
inside a function are local, and that all objects outside a function are
project.

• Local objects do not appear in the Object List. Local objects are not
saved with the notebook and are accessible only from within the
function that uses them.

• Project objects are those that appear in the Object List for the
Notebook. Project objects are saved with the notebook and can be
accessed from any script.

You can change the scope of an object with the project and local
keywords. The following script declares result1 and result2 as project
objects. As project objects, result1 and result2 appear in the Object
List after the function executes.

function multi(x)

project result1, result2;

result1 = x^3;

result2 = x^4;

return result1, result2;

end function;

Outside a function, the local keyword declares an object as local,
indicating that it is temporary and not to be added to the Object List. For
example, the following script uses an object named temp , which does not
appear in the Notebook after the script completes.

local temp;

temp = sin(<pi>);

a = temp;

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-16 © National Instruments Corporation

Flow Control and Looping
HiQ-Script provides several constructs for controlling execution flow and
repetition. Conditional statements (if-then-else and select) execute specific
statements depending on a condition. Looping statements (for and while)
execute a series of statements many times.

If-Then-Else Statement
The following example assigns a different value to the object b depending
on the condition defined for object a.

if a == 5 then

b = 10;

else

b = 0;

end if;

Following the keyword if is a conditional expression. In this example, if
the conditional expression is true, the following statement is executed (the
value 10 is assigned to the object b). If the conditional expression is false,
the else statement is executed (a value of 0 is assigned to the object b).

You can omit the else if you do not want anything to happen, as in the
following example.

if a == 5 then

b = 10;

end if;

B is assigned the value 10 only if a equals 5. Otherwise, the value of B does
not change.

You can have multiple conditional expressions in a single if-then-else
statement. If you want b to be 10 if a is 5, or b to be 20 if a is 10, and b to
be 0 otherwise, use the following script.

if a == 5 then

b = 10;

else if a == 10 then

b = 20;

else

b = 0;

end if;

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-17 HiQ Reference Manual

Conditional Expressions
A conditional expression is any statement that involves a comparison
evaluating to true or false. Consider the following script.

if a == 5 then

b = 10;

else

b = 0;

end if;

Although the expression a == 5 looks like an assignment statement, the
double equal sign (==) means is equal to. If a is equal to the value 5, b is
assigned the value 10. Otherwise, b is assigned the value 0.

You can use the following operators in conditional expressions.

You can combine conditional expressions with the following operators.

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== is equal to

!= not equal to

! logical NOT, which reverses the logic of an
expression

Operator Description

|| inclusive or

or

&& and

and

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-18 © National Instruments Corporation

Use parentheses to control the order of evaluation. The following table
contains valid examples of logical expressions.

To lean more about logical expressions in HiQ-Script, see the Logical
Expression section in Chapter 6, HiQ-Script Reference.

Select Statement
Use the select statement when you need to compare many conditions. The
following example compares the object a to each of the defined cases and
executes the appropriate case.

Select a from

Case 5:

B = 10;

Case 10:

B = 20;

Default:

B = 0;

End select;

In this example, if a is 5, B is set to 10. If a is 10, B is set to 20. Otherwise,
B is set to zero.

For Loop
The for loop repeats a series of statements a specified number of times. The
following script creates a 20-element vector containing the values of the
sine of the index.

for index=1 to 20 do

v[index] = sin(index);

end for;

This code executes the statement v[index] = sin(index) twenty times,
and each time index is incremented by 1. A for loop always begins with
the keyword for and then a loop initializer, which indicates the name of the
counter and the initial value of the counter. In this example, the loop

Expression Description

a < b a is less than b

(b <= c) || (a != d) b is less than or equal to c or a is not equal to d

!(b = c && c < d) the opposite of the following statement:
b is equal to c and c is less than d

Chapter 5 HiQ-Script Basics

© National Instruments Corporation 5-19 HiQ Reference Manual

initializer is index=1 . The object index is the loop counter and it starts at
a value of 1. This value also is changed at each iteration of the loop. You
can use any object name for the counter. Following the loop initializer is the
keyword to and then the terminating value for the counter. The terminating
value is the last value the counter object should have when the loop stops
executing.

After the do keyword are the body statements. In this case, there is one
body statement, v[index] = sin(index); . You can have as many
statements in the for loop body as you want, and you can use the loop
counter in those expression, as long as an expression does not change the
value of the loop counter. In this example, the loop counter is the index to
the vector as well as the value for the sin function to evaluate. The loop
counter cannot be modified within the body of the for loop.

After the body statements, the loop counter is incremented by one, and the
new value is checked against the termination value. If the new value is equal
to the terminating value the loop stops executing.

To increase the loop variable by a value other than 1, specify a step value
using the step keyword. The following example increments the loop
counter, index , by two at each iteration.

for index = 1 to 20 step 2 do

v[index] = v[index] ^ 2;

end for;

While Loop
The while loop repeats a series of statements until a condition is false. For
example, the following script continues squaring a value until the result is
greater than 1000.

while x < 1000 do

x = x ^ 2;

end while;

This code keeps executing the statement x = x ^ 2 , which squares the
value of x and assigns the result back to x , as long as the value of the object
x is less than 1000.

While loops always contain the keyword while , a conditional expression,
the keyword do, and body statements. You can have as many statements as
you want in the body. After the statements, enter end while; to mark the
end of the loop.

Chapter 5 HiQ-Script Basics

HiQ Reference Manual 5-20 © National Instruments Corporation

HiQ executes the statements in the loop as long as the conditional statement
is true. Because the conditional statement is executed first, when the
conditional statement evaluates to false, the body statements are not
executed. Always verify that the conditional expression will eventually
evaluate to false, or the loop will execute forever. If a script does get stuck
in an infinite loop, right click on the script and select Terminate.

© National Instruments Corporation 6-1 HiQ Reference Manual

6
HiQ-Script Reference

This chapter contains an alphabetical reference of HiQ-Script elements,
including expressions and statements. If you are new to HiQ-Script, read
Chapter 5, HiQ-Script Basics, before using this chapter.

Algebraic Expression

Purpose
Determines the values of algebraic operations.

Syntax
literal

constant

object_name

object_name[subrange]

object_name.property

color_initializer

font_initializer

function_initializer

matrix_initializer

polynomial_initializer

vector_initializer

algebraic_binary_expr

algebraic_unary_expr

function_call

(algebraic_expression)

Chapter 6 HiQ-Script Reference — Algebraic Expression

HiQ Reference Manual 6-2 © National Instruments Corporation

Syntax Descriptions

Comments
For more information about properties and methods, see Chapter 4, HiQ Objects and
Object Properties.

For more information about subranges, see Subrange Operator later in this chapter.

See Also
Precedence, Algebraic Unary Operators, Algebraic Binary Operators, Matrix Initialization
Operator, Vector Initialization Operator, Polynomial Initialization Operator, Function
Initialization Operator, Font Initialization Operator, Function Call, Subrange Operator,
Integer Literal, Real Literal, Complex Literal, Text Literal, Constant

Name Description

literal An integer, real, complex, or text literal.

constant A HiQ-Script constant.

object_name The name of an object.

subrange The subrange of object_name to get as the value of the
expression.

property The property or method of object_name to get as the value
of the expression.

color_initializer A color initializer. See Color Initialization Operator.

font_initializer A font initializer. See Font Initialization Operator.

function_initializer A function initializer. See Function Initialization Operator.

matrix_initializer A matrix initializer. See Matrix Initialization Operator.

polynomial_initializer A polynomial initializer. See Polynomial Initialization
Operator.

vector_initializer A vector initializer. See Vector Initialization Operator.

algebraic_binary_expr An algebraic binary expression. See Algebraic Binary
Operators.

algebraic_unary_expr An algebraic unary expression. See Algebraic Unary
Operators.

function_call A call to a function. See Function Call.

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

© National Instruments Corporation 6-3 HiQ Reference Manual

Algebraic Binary Operators

Purpose
Performs an algebraic operation on two expressions.

Syntax
expression1 operator expression2

Syntax Descriptions

Comments
The following tables describe the various operations, the operand types allowed, and the type
of the result.

Exponentiation (^ **)

Name Description

expression1,
expression2

Algebraic expressions.

operator One of the following:
^ ** * / \ % + - .^ .** .* ./ .\ .% .+ .-

expression1 expression2 Result

integer scalar real scalar (1)

real scalar real scalar real scalar

scalar complex scalar complex scalar

matrix integer scalar same as expression1

polynomial integer scalar same as expression1

(1) If the result is expressible as an integer scalar, an integer scalar. Otherwise, a real scalar.

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

HiQ Reference Manual 6-4 © National Instruments Corporation

Multiplication (*)

expression1 expression2 Result

integer scalar integer scalar (1)

scalar scalar (2)

matrix matrix (3)

scalar matrix (3)

matrix scalar (3)

scalar vector (4)

vector scalar (4)

scalar polynomial (5)

polynomial scalar (5)

vector matrix (3)

matrix vector (4)

(1) An integer scalar unless the result overflows, in which case the result is a real scalar.

(2) If expression1 or expression2 is complex, a complex scalar. Otherwise, a real scalar.

(3) If either expression is complex, a complex matrix. If neither expression is complex and either is real, a real
matrix. Otherwise, an integer matrix.

(4) If either expression is complex, a complex vector. If neither expression is complex and either is real, a real
vector. Otherwise, an integer vector.

(5) If expression1 or expression2 is complex, a complex polynomial. Otherwise, a real polynomial.

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

© National Instruments Corporation 6-5 HiQ Reference Manual

Division (/)

For matrices A and B, A/B is equivalent to A* inv(B).

Left Division (\)

For scalars a and b, a\b is equivalent to b/a.

For matrix A and vector b, A\b is equivalent to solve(A,b) .

expression1 expression2 Result

integer scalar integer scalar (1)

scalar scalar (2)

matrix matrix (3)

matrix scalar (3)

vector scalar (4)

polynomial scalar (5)

(1) If expression1 is divisible by expression2 , an integer scalar. Otherwise, a real scalar.

(2) If expression1 or expression2 is complex, a complex scalar. Otherwise, a real scalar.

(3) If expression1 or expression2 is complex, a complex matrix. Otherwise, a real matrix.

(4) If expression1 or expression2 is complex, a complex vector. Otherwise, a real vector.

(5) If expression1 or expression2 is complex, a complex polynomial. Otherwise, a real polynomial.

expression1 expression2 Result

integer scalar integer scalar (1)

scalar scalar (2)

matrix vector (3)

(1) If expression2 is divisible by expression1 , an integer scalar. Otherwise, a real scalar.

(2) If expression1 or expression2 is complex, a complex scalar. Otherwise, a real scalar.

(3) If expression1 or expression2 is complex, a complex vector. Otherwise, a real vector.

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

HiQ Reference Manual 6-6 © National Instruments Corporation

Mod (%)

expression1 expression2 Result

integer scalar integer scalar integer scalar

integer scalar real scalar real scalar

real scalar integer scalar
real scalar

real scalar

real polynomial real polynomial real polynomial

real polynomial complex polynomial complex polynomial

complex polynomial real polynomial
complex polynomial

complex polynomial

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

© National Instruments Corporation 6-7 HiQ Reference Manual

Addition (+)

Addition of a scalar to vectors or matrices adds the scalar to each element of the vector or
matrix.

Addition of text appends the second operand to the first.

expression1 expression2 Result

integer scalar integer scalar (1)

scalar scalar (2)

matrix matrix (3)

matrix scalar (3)

scalar matrix (3)

scalar vector (4)

vector scalar (4)

vector vector (4)

polynomial scalar (5)

scalar polynomial (5)

text text text

(1) An integer scalar unless the result overflows, in which case the result is a real scalar.

(2) If expression1 or expression2 is complex, a complex scalar. Otherwise, a real scalar.

(3) If either expression is complex, a complex matrix. If neither expression is complex and either is real, a real
matrix. Otherwise, an integer matrix.

(4) If either expression is complex, a complex vector. If neither expression is complex and either is real, a real
vector. Otherwise, an integer vector.

(5) If expression1 or expression2 is complex, a complex polynomial. Otherwise, a real polynomial.

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

HiQ Reference Manual 6-8 © National Instruments Corporation

Subtraction (-)

Subtraction of a scalar from vectors and matrices subtracts the scalar from each element of
the vector or matrix.

expression1 expression2 Result

integer scalar integer scalar (1)

scalar scalar (2)

matrix matrix (3)

matrix scalar (3)

scalar matrix (3)

scalar vector (4)

vector scalar (4)

vector vector (4)

polynomial scalar (5)

scalar polynomial (5)

(1) An integer scalar unless the result overflows, in which case the result is a real scalar.

(2) If expression1 or expression2 is complex, a complex scalar. Otherwise, a real scalar.

(3) If either expression is complex, a complex matrix. If neither expression is complex and either is real, a real
matrix. Otherwise, an integer matrix.

(4) If neither expression is complex, a complex vector. If neither expression is complex and either is real, a real
vector. Otherwise, an integer vector.

(5) If expression1 or expression2 is complex, a complex polynomial. Otherwise, a real polynomial.

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

© National Instruments Corporation 6-9 HiQ Reference Manual

Elementwise Exponentiation (.^ .**)

If the second operand is a scalar, the operation is equivalent to standard exponentiation.

For matrices A and B: C = A .^ B means C[i,j] = A[i,j]^B[i,j].

For vectors a and b: c = a.^ b means c[i] = a[i]^b[i].

Elementwise Multiplication (.*)

For matrices A and B: C = A .* B means C[i,j] = A[i,j]* B[i,j].

For vectors a and b: c = a.* b means c[i] = a[i]* b[i].

expression1 expression2 Result

matrix scalar (1)

matrix matrix (1)

vector scalar (2)

vector vector (2)

(1) If expression1 or expression2 is complex, a complex matrix. Otherwise, a real matrix.

(2) If expression1 or expression2 is complex, a complex vector. Otherwise, a real vector.

expression1 expression2 Result

matrix matrix (1)

vector vector (2)

(1) If either expression is complex, a complex matrix. If neither expression is complex and either is real, a real
matrix. Otherwise, an integer matrix.

(2) If either expression is complex, a complex vector. If neither expression is complex and either is real, a real
vector. Otherwise, an integer vector.

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

HiQ Reference Manual 6-10 © National Instruments Corporation

Elementwise Division (./)

For matrices A and B: C = A ./ B means C[i,j] = A[i,j]/B[i,j].

For vectors a and b: c = a./ b means c[i] = a[i]/b[i].

Elementwise Left Division (./)

For matrices A and B: C = A .\ B means C[i,j] = B[i,j]/A[i,j].

For vectors a and b: c = a.\ b means c[i] = b[i]/a[i].

Elementwise Mod (.%)

For matrices A and B: C = A .% B means C[i,j] = A[i,j]%B[i,j].

For vectors a and b: c = a.% b means c[i] = a[i]%a[i].

expression1 expression2 Result

matrix matrix (1)

vector vector (2)

(1) If expression1 or expression2 is complex, a complex matrix. Otherwise, a real matrix.

(2) If expression1 or expression2 is complex, a complex vector. Otherwise, a real vector.

expression1 expression2 Result

matrix matrix (1)

vector vector (2)

(1) If expression1 or expression2 is complex, a complex matrix. Otherwise, a real matrix.

(2) If expression1 or expression2 is complex, a complex vector. Otherwise, a real vector.

expression1 expression2 Result

matrix matrix (1)

vector vector (2)

(1) If either is complex, a complex matrix. If neither expression is complex and either is real, a real matrix.
Otherwise, an integer matrix.

(2) If either is complex, a complex vector. If neither expression is complex and either is real, a real vector.
Otherwise, an integer vector.

Chapter 6 HiQ-Script Reference — Algebraic Binary Operators

© National Instruments Corporation 6-11 HiQ Reference Manual

Elementwise Addition (.+)

Elementwise Subtraction (.-)

See Also
Algebraic Expression, Algebraic Unary Operators, Precedence

expression1 expression2 Result

matrix matrix (1)

vector vector (2)

(1) If either expression is complex, a complex matrix. If neither expression is complex and either is real, a real
matrix. Otherwise, an integer matrix.

(2) If either expression is complex, a complex vector. If neither expression is complex and either is real, a real
vector. Otherwise, an integer vector.

expression1 expression2 Result

matrix matrix (1)

vector vector (2)

(1) If either expression is complex, a complex matrix. If neither expression is complex and either is real, a real
matrix. Otherwise, an integer matrix.

(2) If either expression is complex, a complex vector. If neither expression is complex and either is real, a real
vector. Otherwise, an integer vector.

Chapter 6 HiQ-Script Reference — Algebraic Unary Operators

HiQ Reference Manual 6-12 © National Instruments Corporation

Algebraic Unary Operators

Purpose
Performs an algebraic operation an expression.

Syntax
expression postfix_operator
prefix_operator expression

Syntax Descriptions

Comments
The following tables describe the various operations, the operand types allowed, and the type
of the result.

Conjugate Transpose (‘)

A transpose on an n-element vector returns a 1-by-n matrix.

Name Description

expression An algebraic expression.

postfix_operator '

prefix_operator -

expression Result

integer matrix
integer vector

integer matrix

real matrix
real vector

real matrix

complex matrix
complex vector

complex matrix

Chapter 6 HiQ-Script Reference — Algebraic Unary Operators

© National Instruments Corporation 6-13 HiQ Reference Manual

Additive Inverse (-)

See Also
Algebraic Expression, Algebraic Binary Operators, Precedence

expression Result

integer scalar integer scalar

real scalar real scalar

complex scalar complex scalar

integer matrix
real matrix

real matrix

complex matrix complex matrix

integer vector
real vector

real vector

complex vector complex vector

real polynomial real polynomial

complex polynomial complex polynomial

Chapter 6 HiQ-Script Reference — Assignment

HiQ Reference Manual 6-14 © National Instruments Corporation

Assignment

Purpose
Evaluates an expression and places the result in an object.

Syntax
Form 1
variable = expression ;

Form 2
[variable_list] = function_name (argument_list);

Form 3
variable [subrange] = expression ;

Form 4
variable . property = expression;

Syntax Descriptions

Name Description

variable The name of the object to be modified.

expression Any valid algebraic expression.

variable_list A comma-separated list of object names to be modified.

function_name The name of a built-in or user-defined function. Built-in
function names are not case sensitive. User-defined
function names are case sensitive.

argument_list An optional list of algebraic expressions to pass to the
function.

subrange The portion of variable to receive the value of
expression .

property The property of variable to receive the value of
expression .

Chapter 6 HiQ-Script Reference — Assignment

© National Instruments Corporation 6-15 HiQ Reference Manual

Comments
If the object variable (or any object in variable_list in Form 2) has its value locked,
the assignment fails.

In Forms 1 and 2, if the object to which you are assigning does not have its data type locked,
the object becomes the type of the value from which you are assigning.

In Forms 1 and 2, if the object to which you are assigning has its data type locked and if the
type of the value from which you are assigning is coercible into the object type to which you
are assigning, the value is coerced, leaving the type of the object unchanged. Otherwise, an
error occurs.

In Form 3, if the type of expression is coercible into the type of variable , the coercion
occurs. If the type of variable can be coerced to accept expression and the data type of
variable is not locked, variable changes type. Otherwise, an error occurs. If the subrange
is beyond the range of variable , variable grows to accommodate that range.

Type matching for Form 4 occurs based on the property. See Chapter 4, HiQ Objects and
Object Properties, for valid property values for all HiQ objects.

Logical expressions cannot be assigned in HiQ. For example, the following assignment is
not valid:

a = b < 3;

See Also
Algebraic Expression, Function Call, Property Operator, Subrange Operator

Chapter 6 HiQ-Script Reference — assume

HiQ Reference Manual 6-16 © National Instruments Corporation

assume

Purpose
Sets the scope for variables.

Syntax
assume local;
assume project;

Syntax Descriptions

Comments
An object with local scope appears in the Explorer and can be shared by all functions in the
Notebook. An object with local scope can be used only by the function in which it is declared,
and the object is destroyed when the function ends.

See Also
project, local

Name Description

assume local All objects in the function have local scope unless
explicitly declared as project.

assume project All objects in the function have project scope unless
explicitly declared as local.

Chapter 6 HiQ-Script Reference — Color Initialization Operator

© National Instruments Corporation 6-17 HiQ Reference Manual

Color Initialization Operator

Purpose
Creates a color from a set of algebraic expressions.

Syntax
{color: red , green , blue }

Syntax Descriptions

Comments
Specify color components ranging from 0 to 255. Values outside the range are legal but are
constrained to the range. For example, if you specify a value of 300, the color value defaults
to 255.

See Also
Matrix Initialization Operator, Vector Initialization Operator, Polynomial Initialization
Operator, Function Initialization Operator, Font Initialization Operator, Algebraic
Expression

Name Description

red An integer expression denoting the red component.

green An integer expression denoting the green component.

blue An integer expression denoting the blue component.

Chapter 6 HiQ-Script Reference — Complex Literal

HiQ Reference Manual 6-18 © National Instruments Corporation

Complex Literal

Purpose
Represents a complex value.

Syntax
(realPart, imaginaryPart)

Syntax Descriptions

Comments
Each part of the complex value must be in the range –1.79e308 to 1.79e308.

See Also
Real Literal, Integer Literal, Text Literal

Name Description

realPart A real literal describing the real part of the complex value.

imaginaryPart A real literal describing the imaginary part of the complex
value.

Chapter 6 HiQ-Script Reference — Constant

© National Instruments Corporation 6-19 HiQ Reference Manual

Constant

Purpose
Defines a constant value.

Syntax
<constant >
TRUE
FALSE

Syntax Descriptions

Comments
For a list of the valid HiQ-Script constants, see the HiQ Constants topic in the online help.

See Also
Algebraic Expression, Logical Expression

Name Description

constant The name of a HiQ-Script constant.

TRUE A keyword evaluating to 1.

FALSE A keyword evaluating to 0.

Chapter 6 HiQ-Script Reference — exit

HiQ Reference Manual 6-20 © National Instruments Corporation

exit

Purpose
Terminates processing of a block of statements. Execution begins at the statement following
the block exited.

Syntax
exit;
exit block-type ;
exit count block-type ;
exit block-type ;

Syntax Descriptions

Comments
If the block-type is not used, the function jumps out of the innermost block.

If block-type is used, the function continues executing at the first statement after the end
of that block type, even if it requires jumping out of other block types.

The block keyword refers to any statement block type.

Name Description

block-type A keyword from the following list:

if
for
while
repeat
select
block

ifs
fors
whiles
repeats
selects
blocks

count An integer literal indicating the number of blocks to exit.

Chapter 6 HiQ-Script Reference — Font Initialization Operator

© National Instruments Corporation 6-21 HiQ Reference Manual

Font Initialization Operator

Purpose
Creates a font from a set of expressions.

Syntax
{font: name, size }

Syntax Descriptions

Comments
If the font specified by name is not on your computer, the operating system returns its best
match. As a result, the initialization does not fail if the font requested is not on the computer.

size must be a positive integer.

See Also
Matrix Initialization Operator, Vector Initialization Operator, Polynomial Initialization
Operator, Color Initialization Operator, Function Initialization Operator

Name Description

name A text expression containing the font name.

size An integer expression containing the point size of the font.

Chapter 6 HiQ-Script Reference — for

HiQ Reference Manual 6-22 © National Instruments Corporation

for

Purpose
Repeatedly executes a block of statements. A counter variable updates at each iteration.

Syntax
for counter = start to finish do

statements
end for;

for counter = start to finish step step-size do
statements

end for;

Syntax Descriptions

Comments
counter is an integer if start , finish , and step-size (if present) are all integers.
Otherwise, counter is real. The expressions for start , finish , and step-size are
calculated before the loop begins and not re-evaluated each iteration. At the start of each
iteration, HiQ sets the value of counter for the nth iteration using the formula

counter = start + (n – 1) * step -size

counter cannot be changed by the statements . If a statement performs a function call
passing counter as a parameter, the function cannot change its value.

See Also
while, repeat, next, exit, Algebraic Expression

Name Description

counter Name of object to modify on each iteration.

start An algebraic expression that evaluates to an integer or real
scalar. counter is set to the result of the expression.

finish An algebraic expression that evaluates to an integer or real
scalar. counter is incremented by 1 or step-size , if
specified, until it reaches the result of the expression.

step-size An algebraic expression that evaluates to an integer or real
scalar. counter is incremented by the result of the
expression on each iteration.

statements Zero or more statements.

Chapter 6 HiQ-Script Reference — function

© National Instruments Corporation 6-23 HiQ Reference Manual

function

Purpose
Defines a function.

Syntax
function name(param_list)

statements
end function;

Syntax Descriptions

Comments
The caller can call a function with fewer parameters than specified. The object __ins holds
the number of parameters with which the caller called the function.

The caller can request a different number of returns than specified in a return statement. The
object __outs holds the number of parameters the caller requested.

You can reference function parameters with the array __param , as in the following example.

function foo(a,b,c,d)

select d from

case 1: return __param[1]; //returns a

case 2: return __param[2]; //returns b

case 3: return __param[3]; //returns c

default: return __param[4]; //returns d

end select;

end function;

Name Description

name Name of the function. The name must be a valid object
name and cannot be the name of the script in which the
function resides.

param_list Optional comma-delimited list of parameter names. The
parameter names must be object names.

statements One or more valid statements.

Chapter 6 HiQ-Script Reference — function

HiQ Reference Manual 6-24 © National Instruments Corporation

Function blocks are not statements; that is, they cannot appear inside any statement block.
They can appear only in the scope of external statements.

The position in which a function call appears in relation to its definition is not important. It
can appear before, after, or within another script.

The default scoping for functions is local. For a complete description of scoping, see the
assume section earlier in this chapter.

None of the parameter names in param_list can have the same name as name or as the name
of the script in which the function resides.

See Also
 return, Function Initialization Operator

Chapter 6 HiQ-Script Reference — Function Call

© National Instruments Corporation 6-25 HiQ Reference Manual

Function Call

Purpose
Calls a built-in or user-defined function.

Syntax
function_name (argument_list);
variable = function_name (argument_list);
[variable_list] = function_name (argument_list);

Syntax Descriptions

Comments
Objects passed as parameters to a function are passed by reference. That is, the function can
modify the object value. Any subrange or property passed as a parameter to a function is
passed by value. That is, a copy of the subrange or property is passed to the function, and the
value of the subrange or property cannot be changed.

See Also
function, return, Assignment

Name Description

function_name The name of a built-in or user-defined function. Built-in
function names are not case sensitive. User-defined
function names are case sensitive.

argument_list An optional list of algebraic expressions to pass to the
function.

variable The name of the object to receive the returned value of the
function. If the function returns more than one value,
variable receives the first returned value.

variable_list A comma-delimited list of object names to receive the
returned values of the functions. The objects receive
values in the order they are returned by the called function.
If you do not want a specific value, omit names in
variable_list , as in the following example.

[,b,c] = f();

The first value returned by f is discarded, b receives the
second value, and c receives the third value.

Chapter 6 HiQ-Script Reference — Function Initialization Operator

HiQ Reference Manual 6-26 © National Instruments Corporation

Function Initialization Operator

Purpose
Creates a function from an expression.

Syntax
{f: body }
{f: arglist : body }
{func: body }
{func: arglist : body }

Syntax Descriptions

Comments
The body of the generated function behaves differently depending on whether a semicolon is
present. If a semicolon is present, body is interpreted as a complete sequence of statements.
The following two code examples provide identical results.

minimum={func: x,y: “if (x < y) then return x; else return y; endif;”};

function minimum(x, y)

if (x < y) then

return x;

else

return y;

endif;

end function;

Name Description

arglist A comma-delimited list of parameters for the function.

body A text expression that contains the body of the function.

Chapter 6 HiQ-Script Reference — Function Initialization Operator

© National Instruments Corporation 6-27 HiQ Reference Manual

If a semicolon is absent, body is interpreted as an algebraic expression and the return value
of the function. All variables used are assumed to have project scoping. The following two
code examples provide identical results.

aSinPlusCos = {func: x: “a * sin(x) + cos(x)”};

function aSinPlusCos(x)

assume project;

return a * sin(x) + cos(x);

end function;

See Also
Matrix Initialization Operator, Vector Initialization Operator, Polynomial Initialization
Operator, Color Initialization Operator, Font Initialization Operator, function, assume

Chapter 6 HiQ-Script Reference — if

HiQ Reference Manual 6-28 © National Instruments Corporation

if

Purpose
Executes a block of statements only when a condition is true.

Syntax
Form 1
if condition then

statements
end if;

Form 2
if condition then

statements
else

statements
end if;

Form 3
if condition then

statements
else if condition then

statements
.
.
.

else
statements

end if;

Syntax Descriptions

Name Description

condition A logical expression. The statements in the block are
executed only if the expression evaluates to true.

statements Zero or more statements.

Chapter 6 HiQ-Script Reference — if

© National Instruments Corporation 6-29 HiQ Reference Manual

Comments
You can specify the else if block repeatedly and omit the else block.

Conditions are evaluated in the order that they appear.

Conditions are completely evaluated and do not short circuit as in C and C++. In the following
example, the expression f(3) is evaluated even if a < b.

if a < b or f(3) = 7 then

//statements omitted

end if;

See Also
while, select, exit, Logical Expression

Chapter 6 HiQ-Script Reference — Integer Literal

HiQ Reference Manual 6-30 © National Instruments Corporation

Integer Literal

Purpose
Represents an integer value.

Syntax
integer

Syntax Descriptions

Comments
Integers must be in the closed range [–231–1, 231].

See Also
Real Literal, Complex Literal, Text Literal

Name Description

integer An sequence of digits, optionally preceded by a
minus sign.

Chapter 6 HiQ-Script Reference — local

© National Instruments Corporation 6-31 HiQ Reference Manual

local

Purpose
Defines the scope of a list of variables as local.

Syntax
local variable_list ;

Syntax Descriptions

Comments
The default scoping for functions is local. For a complete description of scoping, see assume
earlier in this chapter.

See Also
assume, project

Name Description

variable_list Comma-delimited list of variable object names.

Chapter 6 HiQ-Script Reference — Logical Expression

HiQ Reference Manual 6-32 © National Instruments Corporation

Logical Expression

Purpose
Used by flow-control constructs to determine the path of execution.

Syntax
algebraic_expression
logical_unary_expr
logical_binary_expr
relational_expr

Syntax Descriptions

Comments
An integer is considered true if its value is not zero and false if its value is zero.

See Also
Algebraic Expression, Precedence, Logical Unary Operators, Logical Binary Operators,
Relational Operators

Name Description

algebraic_expression An algebraic expression that evaluates to an integer scalar.

logical_unary_expr A logical unary expression. See Logical Unary Operators.

logical_binary_expr A logical binary expression. See Logical Binary
Operators.

relational_expr A relational expression. See Relational Operators.

Chapter 6 HiQ-Script Reference — Logical Binary Operators

© National Instruments Corporation 6-33 HiQ Reference Manual

Logical Binary Operators

Purpose

Performs a logical operation on two expressions.

Syntax
Form 1
expression1 and expression2
expression1 && expression2

Form 2
expression1 or expression2
expression1 || expression2

Syntax Descriptions

Comments
The value of Form 1 is true if both expressions are true. Otherwise, it is false.

The value of Form 2 is true if either expression or both expressions are true. Otherwise, it is
false.

An integer is considered true if its value is not zero and false if its value is zero.

See Also
Logical Expression, Logical Unary Operators, Relational Operators

Name Description

expression1,
expression2

An algebraic or logical expression. If expression is an
algebraic expression, it must be an integer.

Chapter 6 HiQ-Script Reference — Logical Unary Operators

HiQ Reference Manual 6-34 © National Instruments Corporation

Logical Unary Operators

Purpose
Performs a logical operation on an expression.

Syntax
Form 1
not expression

Form 2
! expression

Syntax Descriptions

Comments

If expression is false, the value of both forms is true. If expression is true, the value of
both forms is false.

An integer is considered true if its value is not zero and false if its value is zero.

See Also
Logical Expression, Logical Unary Operators, Relational Operators

Name Description

expression An algebraic or logical expression. If expression is an
algebraic expression, it must be an integer scalar.

Chapter 6 HiQ-Script Reference — Matrix Initialization Operator

© National Instruments Corporation 6-35 HiQ Reference Manual

Matrix Initialization Operator

Purpose
Creates a matrix from a set of expressions.

Syntax
{ row_list_1; row_list_2; … row_list_n }
{m: row_list_1; row_list_2; … row_list_n }
{matrix: row_list_1; row_list_2; … row_list_n }

Syntax Descriptions

Comments
The list must consist only of scalars, vectors, and matrices. Vectors are inserted into the matrix
as columns. To insert a vector as a row, use the transpose operator.

Within each row_list all expressions must have the same number of rows. All row_lists
must have the same number of columns.

If any element in the row_list is complex, the resulting matrix is complex. If no element is
complex and any element is real, the resulting matrix is real. Otherwise, the resulting matrix
is integer.

See Also
Algebraic Unary Operators, Vector Initialization Operator, Polynomial Initialization
Operator, Color Initialization Operator, Function Initialization Operator, Font Initialization
Operator

createMatrix in Chapter 7, Function Reference

Name Description

row_list A comma-delimited list of algebraic expressions.

Chapter 6 HiQ-Script Reference — next

HiQ Reference Manual 6-36 © National Instruments Corporation

next

Purpose
Continues on to the next state.

Syntax
next;
next block_type ;

Syntax Descriptions

Comments
In a for loop, while loop, or repeat loop, next causes execution to continue at the end
statement for that block.

In a select block, next causes execution to jump to the next case of the select if there is one.
Otherwise, execution jumps to the end of the select block. You must use the block_type
case in a select block.

If block_type is used, the function continues executing at the first statement after the end
of that block type, even if it requires jumping out of other block types.

See Also
select, for, while, repeat

Name Description

block_type A keyword from the following list.

case
for
while
repeat

Chapter 6 HiQ-Script Reference — Polynomial Initialization Operator

© National Instruments Corporation 6-37 HiQ Reference Manual

Polynomial Initialization Operator

Purpose
Creates a polynomial from a set of expressions.

Syntax
Form 1
{p: expression_list }
{polynomial: expression_list }

Form 2
{p: init_text }
{polynomial: init_text }

Syntax Descriptions

Comments
In Form 1, the coefficients are taken from the expression_list highest order first.
For example, {p:1,0,2} is the polynomial x2 + 2.

In Form 2, you must use the variable x. You can omit the multiplication sign and use either
^ or ** to indicate exponentiation. For example, the following polynomial is valid:

“5x^3+2x^2-x+1”

See Also
Matrix Initialization Operator, Vector Initialization Operator, Color Initialization Operator,
Function Initialization Operator, Font Initialization Operator

createPoly in Chapter 7, Function Reference

Name Description

expression_list A comma separated list of algebraic expressions.

init_text A text representation of the polynomial.

Chapter 6 HiQ-Script Reference — Precedence

HiQ Reference Manual 6-38 © National Instruments Corporation

Precedence

Purpose
Determines the order in which expressions are evaluated.

Comments
The following table describes the order of evaluation of HiQ expressions.

See Also
Logical Unary Operators, Logical Binary Operators, Relational Operators, Algebraic Unary
Operators, Algebraic Binary Operators, Property Operator, Subrange Operator

Operator Precedence Higher to Lower Direction of Evaluation

. (Property) [] (Subscript) Left to right.

() (Grouping) Left to right.

+ (unary) - (unary) not ! Right to left.

^ ** Left to right.

* / \ % Left to right.

+ (binary) - (binary) Left to right.

< <= > >= != <> = == Left to right.

and && Left to right.

or || Left to right.

Chapter 6 HiQ-Script Reference — project

© National Instruments Corporation 6-39 HiQ Reference Manual

project

Purpose
Defines the scope of a list of variables to be project.

Syntax
project variable_list ;

Syntax Descriptions

Comments
The default scoping for functions is local. For a complete description of scoping, see assume
earlier in this chapter.

See Also
assume, local

Name Description

variable_list Comma-delimited list of object names.

Chapter 6 HiQ-Script Reference — Property Operator

HiQ Reference Manual 6-40 © National Instruments Corporation

Property Operator

Purpose
Accesses a property or method of an object.

Syntax
object . operator

Syntax Descriptions

Comments
For a complete list and description of HiQ object properties, see Chapter 4, HiQ Objects and
Object Properties.

Name Description

object The object whose property or method is accessed.

operator The property or method.

Chapter 6 HiQ-Script Reference — Real Literal

© National Instruments Corporation 6-41 HiQ Reference Manual

Real Literal

Purpose
Represents an real value.

Syntax
wholepart.
wholepart.fractionalPart
.fractionalPart
wholepart. Epower
wholepart.fractionalPart Epower
.fractionalPart. Epower

Syntax Descriptions

Comments
The range of reals in HiQ is –1.79e308 to 1.79e308.

The following are examples of real literals:

4.5
1.35E-5
0.3513
12.

See Also
Integer Literal, Complex Literal, Text Literal

Name Description

wholepart The whole portion of the real.

fractionalPart The fractional portion of the real.

power The power of ten by which the rest of the number is
multiplied.

Chapter 6 HiQ-Script Reference — Relational Operators

HiQ Reference Manual 6-42 © National Instruments Corporation

Relational Operators

Purpose
Performs a comparison of two expressions.

Syntax
Form 1—Equality
expression1 = expression2
expression1 == expression2

Form 2—Inequality
expression1 <> expresssion2
expression1 != expresssion2

Form 3—Greater Than
expression1 > expression2

Form 4—Less Than
expression1 < expression2

Form 5—Greater Than Or Equal To
expression1 >= expression2

Form 6—Less Than Or Equal To
expression1 <= expression2

Syntax Descriptions

Comments
For all relational operations, if the relationship is true, the result is true. If the relationship is
false, the result is false.

Name Description

expression1,
expression2

Algebraic expressions. In addition Forms 1 and 2 can be
logical expressions.

Chapter 6 HiQ-Script Reference — Relational Operators

© National Instruments Corporation 6-43 HiQ Reference Manual

Forms 1 and 2 accept the following combinations of types for the expressions:

Forms 3 through 6 accept the following combinations of types for the expressions:

All text comparisons are case sensitive and use the ASCII sorting sequence.

See Also
Logical Expression, Logical Unary Operators, Logical Binary Operators

expression1 expression2

integer, real, or complex scalar integer, real, or complex scalar

integer, real, or complex vector integer, real, or complex vector

integer, real, or complex matrix integer, real, or complex matrix

real or complex polynomial real or complex polynomial

text text

expression1 expression2

integer, real, or complex scalar integer, real, or complex scalar

text text

Chapter 6 HiQ-Script Reference — repeat

HiQ Reference Manual 6-44 © National Instruments Corporation

repeat

Purpose
Repeatedly executes a block of statements until a condition is true. The condition is evaluated
after the statements have executed.

Syntax
repeat

statements
end repeat when condition ;

Syntax Descriptions

See Also
for, while, repeat forever, next, exit, Logical Expression

Name Description

condition Logical expression. Until this expression evaluates to true,
the block of statements repeatedly executes.

statements Zero or more statements.

Chapter 6 HiQ-Script Reference — repeat forever

© National Instruments Corporation 6-45 HiQ Reference Manual

repeat forever

Purpose
Repeatedly executes a block of statements. Exit from this block of statements only occurs as
a result of a return or exit statement.

Syntax
repeat forever

statements
end repeat;

Syntax Descriptions

Comments
The only way to exit this loop is to include an exit or return statement within it.

See Also
for, while, repeat, next, return, exit, Logical Expression

Name Description

statements One or more statements.

Chapter 6 HiQ-Script Reference — return

HiQ Reference Manual 6-46 © National Instruments Corporation

return

Purpose
Exits a function. If an expression is specified, that expression is returned to the calling
function.

Syntax
return;
return return_list ;

Syntax Descriptions

Comments
All expressions in return_list are evaluated before the function returns to the caller.
The caller can request a different number of return values than supplied by the return.

See Also
function

Name Description

return_list A comma separated list of algebraic expressions.

Chapter 6 HiQ-Script Reference — select

© National Instruments Corporation 6-47 HiQ Reference Manual

select

Purpose
Selects a group of statements to be executed based on the evaluation of an expression.

Syntax
select selector from

case item :
statements

.

.

.
default:

statements
end select;

Syntax Descriptions

Comments
If no item has the same value as selector , the statements associated with default are
executed.

The default case is optional.

After executing the last statement associated with the case, execution jumps to the end of the
select statement. If you want to fall through to the next case, use the next case statement.

See Also
next, exit

Name Description

selector An algebraic expression that determines which case to
choose.

item An algebraic expression. The first item that has the same
value as selector is selected, and the statements
associated with that case are executed.

statements One or more valid statements.

Chapter 6 HiQ-Script Reference — Subrange Operator

HiQ Reference Manual 6-48 © National Instruments Corporation

Subrange Operator

Purpose
Defines a subrange of a complete object.

Syntax
object [element]
object [range]
object [element , element]
object [range , element]
object [element, range]
object [range , range]

Syntax Descriptions

Comments
When you use an integer to specify element , you indicate the subrange of a particular
element. If you specify element with an asterisk or leave it blank, the subrange refers to all
the elements.

vect[3] // Refers to the third element of the vector

text[*] // Refers to the entire text

Use two integers in a range to indicate a closed range , in which case the size of range is
fully qualified. Use an asterisk or a blank in a range to indicate an open range . An open
range in an expression goes to start or end of the range , as in the following example.

vect = {v:1,2,3,4,5,6,7,8,9};

w1 = v[6:*];//w1 is 6,7,8,9

w2 = v[*:3];//w2 is 1,2,3

Name Description

object The object whose subrange is being taken. The object must
be a vector, matrix, polynomial, or text.

element One of the following:
An integer expression
*
Nothing

See Comments for an explanation.

range A range of the form element1:element2

Chapter 6 HiQ-Script Reference — Subrange Operator

© National Instruments Corporation 6-49 HiQ Reference Manual

On the left hand side of an assignment, an open range indicates that the object should grow
to fit, as in the following example.

vect = {v:1,2,3,4};

vect[3:*] = {v:10,11}; //vect is now 1,2,10,11

vect[3:*] = {v:100,101,102,103};//vect is now 1,2,100,101,102,103

Not all forms of subranging are valid for all types of objects. The tables below list which
forms are valid and the type of the resulting subrange.

Vector

Text

Polynomial

Form Result

v[i] Scalar (the ith element of the vector)

v[]
v[*]

Vector (the vector itself)

v[i:k] Vector (the ith through kth elements of the vector)

Form Result

t[i] Text (the ith character of the text)

t[]
t[*]

Text (the text itself)

t[i:k] Text (the ith through kth characters of the text)

Form Result

p[i] Scalar (the coefficient of xi)

Chapter 6 HiQ-Script Reference — Subrange Operator

HiQ Reference Manual 6-50 © National Instruments Corporation

Matrix

See Also
Algebraic Expression, Assignment, Matrix Initialization Operator, Polynomial Initialization
Operator, Vector Initialization Operator

Form Result

m[i] Vector (the ith row of the matrix)

m[]
m[*]

Matrix (the matrix itself)

m[i:k] Matrix (rows i through k of the matrix)

m[i,k] Scalar (the (i,k)th element of the matrix)

m[,k]
m[*,k]

Vector (the kth column of matrix)

m[i,]
m[i,*]

Vector (the ith row of matrix)

m[i:k,p] Vector (the ith through kth elements of the pth column)

m[i:k,]
m[i:k, *]

Matrix (rows i through k of the matrix)

m[i,p:q] Vector (the pth through qth elements of the ith column)

m[,p:q]
m[*,p:q]

Matrix (columns p through q of the matrix)

m[i:j,p:q] Matrix (the elements in rows i through j and columns p
through q)

Chapter 6 HiQ-Script Reference — Text Literal

© National Instruments Corporation 6-51 HiQ Reference Manual

Text Literal

Purpose
Represents text.

Syntax
“ text ”

Syntax Descriptions

See Also
Real Literal, Complex Literal, Integer Literal

Name Description

text A sequence of characters that define the text. The sequence
of characters cannot contain a linefeed or a double quote.

Chapter 6 HiQ-Script Reference — Vector Initialization Operator

HiQ Reference Manual 6-52 © National Instruments Corporation

Vector Initialization Operator

Purpose
Creates a vector from a set of expressions.

Syntax
{v: list }
{vector: list }

Syntax Descriptions

Comments
list can consist only of scalars, vectors, single row matrices, and single column matrices.

If any element in list is complex, the resulting vector is complex. If none are complex and
any is real, the resulting vector is real. Otherwise, the resulting vector is integer.

See Also
Matrix Initialization Operator, Polynomial Initialization Operator, Color Initialization
Operator, Function Initialization Operator, Font Initialization Operator

createVector in Chapter 7, Function Reference

Name Description

list A comma-delimited list of algebraic expressions. Scalars,
vectors, and matrices with either a single row or column
are valid.

Chapter 6 HiQ-Script Reference — while

© National Instruments Corporation 6-53 HiQ Reference Manual

while

Purpose
Repeatedly executes a block of statements while a particular condition is true. The condition
is evaluated before the statements are executed.

Syntax
while condition do

statements
end while;

Syntax Descriptions

See Also
for, repeat, repeat forever, Logical Expression

Name Description

condition Logical expression. While this expression evaluates to
true, the block of statements repeatedly executes.

statements Zero or more statements.

© National Instruments Corporation 7-1 HiQ Reference Manual

7
Function Reference

This chapter contains an alphabetical list and description of every HiQ
built-in function.

abs

Purpose
Computes the absolute value or complex magnitude of a number.

Usage
y = abs(x)

Parameters

Comments
For complex values, abs(x) returns the complex magnitude r in the polar representation of
a complex number

For vectors and matrices, abs(x) returns the absolute value or complex magnitude on an
element-by-element basis.

See Also
arg , sign

Name Type Description

x Scalar, Vector,
or Matrix

The input argument.

y Scalar, Vector,
or Matrix

The absolute value of the input argument.

z re
iθ=

Chapter 7 Function Reference — addPlot

HiQ Reference Manual 7-2 © National Instruments Corporation

addPlot

Purpose
Adds a plot to a graph.

Usage
Adds an existing plot object to a graph.

addPlot(graph, plot)

Adds a new 2D curve plot to a graph.
plotID = addPlot(graph, y)

plotID = addPlot(graph, x, y)

plotID = addPlot(graph, x, yFct)

Adds a new 3D surface plot to a graph.
plotID = addPlot(graph, Z , colorMap)

plotID = addPlot(graph, x, y, Z , colorMap)

plotID = addPlot(graph, x, y, ZFct , colorMap)

Adds a new 3D parametric curve plot to a graph.
plotID = addPlot(graph, x, y, z , colorMap)

plotID = addPlot(graph, tParam, xFct, yFct, zFct , colorMap)

Adds a new 3D parametric surface plot to a graph.
plotID = addPlot(graph, X, Y, Z , colorMap)

plotID = addPlot(graph, uParam, vParam, XFct, YFct, ZFct , colorMap)

Changes the plot data associated with an embedded plot.
plotID = addPlot(graph, plotID, ...)

Parameters

Name Type Description

graph 2D or 3D Graph The graph to which you want to add the
specified plot.

plot 2D or 3D Plot The plot you want to add to the specified graph.

y Real Vector The y data set for a 2D or 3D curve or a
3D surface plot.

x Real Vector The x data set for a 2D or 3D curve or a
3D surface plot.

Chapter 7 Function Reference — addPlot

© National Instruments Corporation 7-3 HiQ Reference Manual

yFct Function The y function to evaluate for a 2D curve or a
3D parametric curve plot.

Z Real Matrix The z data set for a 3D surface or parametric
surface plot.

colorMap Real Matrix Set of data defining the plot color map values
to use. Must have the same dimensions as the
3D z data. (Optional.)

ZFct Function The z function for a 3D surface or parametric
surface plot.

z Real Vector The z data set for a 3D curve.

tParam Real Vector The t parametric data for a 3D parametric
curve.

xFct Function The x function to evaluate for a 3D parametric
curve plot.

zFct Function The z function to evaluate for a 3D parametric
curve plot.

X Real Matrix The x data set for a 3D parametric surface plot.

Y Real Matrix The y data set for a 3D parametric surface plot.

uParam Real Vector The u parametric data for a 3D parametric
surface.

vParam Real Vector The v parametric data for a 3D parametric
surface.

XFct Function The x function for a 3D parametric
surface plot.

YFct Function The y function for a 3D parametric
surface plot.

plotID Integer Scalar A handle representing the new embedded plot
or existing changed plot.

plotID Integer Scalar A handle representing the new embedded plot
or existing changed plot.

Name Type Description

Chapter 7 Function Reference — addPlot

HiQ Reference Manual 7-4 © National Instruments Corporation

Comments
The first usage links a plot object to a graph. A plot object is a HiQ object returned from
CreatePlot . A graph object is a HiQ object returned from CreateGraph . The graph and
plot objects must have the same dimension. For example, if you create a 3D graph using
CreateGraph , the plot you create using CreatePlot also must be 3D. The following
example creates a 3D graph object and 3D plot object and adds the plot object to the graph.

myGraph = createGraph(<Graph3D>);

myPlot = createPlot(x, y, z);

addPlot(myGraph, myPlot);

The remaining usages embed a plot directly into the graph without creating a separate plot
object. HiQ assigns a unique plot handle to each plot embedded in the graph. You can use the
plot handle to modify the properties of the plot. For example, the following script changes the
color of an embedded 2D curve plot represented by the handle plot1 .

graph.plots(plot1).color = <red>;

The final usage allows you to change the data of an existing plot. For example, the following
script changes the data of an existing embedded 2D curve plot represented by the handle
plot1 .

plot1 = addPlot(graph,plot1,x,y);

If a plot with the specified plot handle, plot1 , does not exist in the graph or you have not
assigned a value to plot1 , the above script adds a new embedded plot and returns a new plot
handle.

When the x-axis data is not supplied in a 2D plot or the x-axis and y-axis data are not supplied
in a 3D plot, HiQ uses the positive integers.

For 3D plots, the z data set, or the color map if provided, is used to determine the color of the
plot. Use the colorMap.style property of the plot to define the color palette.

See Also
changePlotData , createGraph , createPlot , removePlot

Chapter 7 Function Reference — airy

© National Instruments Corporation 7-5 HiQ Reference Manual

airy

Purpose
Computes the Airy functions Ai and Bi.

Usage
[ai, bi] = airy(x)

Parameters

Comments
The Airy functions Ai and Bi are solutions to the Airy differential equation

Illustrating the second derivative relationships of the Airy function.
// Show the second derivative relationships for the airy function,

// i.e., d2f/dx2 = x*F where F = Ai(x) or Bi(x).

// Grab a random evaluation point.

x = random(-5, 5);

// Compute the airy functions at the evaluation point.

[ai, bi] = airy (x);

// Generate an individual function to compute the second derivatives.

Ai = {f:x:" airy (x)"};

Bi = {f:x:"[,bix] = airy (x); return bix;"};

// Compute the second derivative for each at the evaluation point.

d2Ai = derivative(Ai, x, 2);

d2Bi = derivative(Bi, x, 2);

Name Type Description

x Real Scalar The input argument.

ai Real Scalar The value of the Airy function Ai.

bi Real Scalar The value of the Airy function Bi.

d
2
f

dx
2

-------- xf– 0=

Chapter 7 Function Reference — airy

HiQ Reference Manual 7-6 © National Instruments Corporation

// Compute the difference in the two computations.

diffAi = d2Ai - ai*x;

diffBi = d2Bi - bi*x;

// Show the results.

message("Difference in Ai(x) = " + totext(diffAi));

message("Difference in Bi(x) = " + totext(diffBi));

See Also
besselI , besselJ , besselK , besselY

Chapter 7 Function Reference — arccos

© National Instruments Corporation 7-7 HiQ Reference Manual

arccos

Purpose
Computes the inverse cosine.

Usage
y = arccos(x)

Parameters

Comments
The inverse cosine is defined for the real domain [].

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos (iy).

arccosh_iy = <i>* arccos (<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse cosine of the input in radians.

1– 1,

Chapter 7 Function Reference — arccos

HiQ Reference Manual 7-8 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccosh , arcsin , cos

Chapter 7 Function Reference — arccosh

© National Instruments Corporation 7-9 HiQ Reference Manual

arccosh

Purpose
Computes the inverse hyperbolic cosine.

Usage
y = arccosh(x)

Parameters

Comments
The inverse hyperbolic cosine is defined for the real domain ().

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh (iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>* arccosh (<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse hyperbolic cosine of the input.

1 ∞,

Chapter 7 Function Reference — arccosh

HiQ Reference Manual 7-10 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccos , arcsinh , cosh

Chapter 7 Function Reference — arccot

© National Instruments Corporation 7-11 HiQ Reference Manual

arccot

Purpose
Computes the inverse cotangent.

Usage
y = arccot(x)

Parameters

Comments
The inverse cotangent is defined for the real domain ().

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot (y).

arccoth_iy = -<i>* arccot (y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse cotangent of the input in radians.

∞– ∞,

Chapter 7 Function Reference — arccot

HiQ Reference Manual 7-12 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccoth , arctan , cot

Chapter 7 Function Reference — arccoth

© National Instruments Corporation 7-13 HiQ Reference Manual

arccoth

Purpose
Computes the inverse hyperbolic cotangent.

Usage
y = arccoth(x)

Parameters

Comments
The inverse hyperbolic cotangent is defined for the real domain [].

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth (iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>* arccoth (<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse hyperbolic cotangent of the input.

1– 1,

Chapter 7 Function Reference — arccoth

HiQ Reference Manual 7-14 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccot , arctanh , coth

Chapter 7 Function Reference — arccsc

© National Instruments Corporation 7-15 HiQ Reference Manual

arccsc

Purpose
Computes the inverse cosecant.

Usage
y = arccsc(x)

Parameters

Comments
The inverse cosecant is defined for the real domain [].

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc (y).

arccsch_iy = -<i>* arccsc (y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse cosecant of the input in radians.

1– 1,

Chapter 7 Function Reference — arccsc

HiQ Reference Manual 7-16 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccsch , arcsec , csc

Chapter 7 Function Reference — arccsch

© National Instruments Corporation 7-17 HiQ Reference Manual

arccsch

Purpose
Computes the inverse hyperbolic cosecant.

Usage
y = arccsch(x)

Parameters

Comments
The inverse hyperbolic cosecant is defined for the real domain (), .

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch (iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>* arccsch (<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse hyperbolic cosecant of the input.

∞– ∞, x 0≠

Chapter 7 Function Reference — arccsch

HiQ Reference Manual 7-18 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccsc , arcsech , csch

Chapter 7 Function Reference — arcsec

© National Instruments Corporation 7-19 HiQ Reference Manual

arcsec

Purpose
Computes the inverse secant.

Usage
y = arcsec(x)

Parameters

Comments
The inverse secant is defined for the real domain [].

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse secant of the input in radians.

1– 1,

Chapter 7 Function Reference — arcsec

HiQ Reference Manual 7-20 © National Instruments Corporation

// Compute arcsech(iy) and arcsec (iy).

arcsech_iy = -<i>* arcsec (<i>*y);

arcsec_iy = <i>* arcsec (<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccsc , arcsech , sec

Chapter 7 Function Reference — arcsech

© National Instruments Corporation 7-21 HiQ Reference Manual

arcsech

Purpose
Computes the inverse hyperbolic secant.

Usage
y = arcsech(x)

Parameters

Comments
The inverse hyperbolic secant is defined for the real domain [].

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse hyperbolic secant of the input.

0 1,

Chapter 7 Function Reference — arcsech

HiQ Reference Manual 7-22 © National Instruments Corporation

// Compute arcsech (iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccsch , arcsec , sech

Chapter 7 Function Reference — arcsin

© National Instruments Corporation 7-23 HiQ Reference Manual

arcsin

Purpose
Computes the inverse sine.

Usage
y = arcsin(x)

Parameters

Comments
The inverse sine is defined for the real domain [].

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse sine of the input in radians.

1– 1,

Chapter 7 Function Reference — arcsin

HiQ Reference Manual 7-24 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin (y).

arcsinh_iy = <i>* arcsin (y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccos , arcsinh , sin

Chapter 7 Function Reference — arcsinh

© National Instruments Corporation 7-25 HiQ Reference Manual

arcsinh

Purpose
Computes the inverse hyperbolic sine.

Usage
y = arcsinh(x)

Parameters

Comments
The inverse hyperbolic sine is defined for the real domain ().

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse hyperbolic sine of the input.

∞– ∞,

Chapter 7 Function Reference — arcsinh

HiQ Reference Manual 7-26 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh (iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>* arcsinh (<i>*y);

// Compute arctanh(iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccosh , arcsin , sinh

Chapter 7 Function Reference — arctan

© National Instruments Corporation 7-27 HiQ Reference Manual

arctan

Purpose
Computes the inverse tangent.

Usage
y = arctan(x)

y = arctan(num, den)

Parameters

Comments
The inverse tangent is defined for the real domain ().

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

num Real or Complex
Scalar

The length of the opposite side.

den Real or Complex
Scalar

The length of the adjacent side.

y Real or Complex
Scalar

The inverse tangent of the input in radians.

∞– ∞,

Chapter 7 Function Reference — arctan

HiQ Reference Manual 7-28 © National Instruments Corporation

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh(iy) and arctan (iy).

arctanh_iy = <i>* arctan (y);

arctan_y = <i>*arctanh(<i>*y);

See Also
arccot , arctanh , tan

Chapter 7 Function Reference — arctanh

© National Instruments Corporation 7-29 HiQ Reference Manual

arctanh

Purpose
Computes the inverse hyperbolic tangent.

Usage
y = arctanh(x)

Parameters

Comments
The inverse hyperbolic tangent is defined for the real domain [].

Examples
Illustrating inverse trigonometric identities.
// Use identities to compute inverse trigonometrics using inverse

// hyperbolic trigonometrics and vice versa.

// Grab a random argument for the computation.

y = random(-<pi>, <pi>);

// Compute arccosh(iy) and arccos(iy).

arccosh_iy = <i>*arccos(<i>*y);

arccos_iy = -<i>*arccosh(<i>*y);

// Compute arccoth(iy) and arccot(y).

arccoth_iy = -<i>*arccot(y);

arccot_y = <i>*arccoth(<i>*y);

// Compute arccsch(iy) and arccsc(y).

arccsch_iy = -<i>*arccsc(y);

arccsc_y = -<i>*arccsch(<i>*y);

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The inverse hyperbolic tangent of the input.

1– 1,

Chapter 7 Function Reference — arctanh

HiQ Reference Manual 7-30 © National Instruments Corporation

// Compute arcsech(iy) and arcsec(iy).

arcsech_iy = -<i>*arcsec(<i>*y);

arcsec_iy = <i>*arcsec(<i>*y);

// Compute arcsinh(iy) and arcsin(y).

arcsinh_iy = <i>*arcsin(y);

arcsin_y = <i>*arcsinh(<i>*y);

// Compute arctanh (iy) and arctan(iy).

arctanh_iy = <i>*arctan(y);

arctan_y = <i>* arctanh (<i>*y);

See Also
arccoth , arctan , tanh

Chapter 7 Function Reference — arg

© National Instruments Corporation 7-31 HiQ Reference Manual

arg

Purpose
Computes the argument (principle value or phase angle) of a complex number.

Usage
y = arg(x)

Parameters

Comments
The argument of a complex number is the angle in the polar representation of a complex
number

For vectors and matrices, arg(x) returns the principle value of the input on an
element-by-element basis. The return data type and size are identical to the input data type
and size. The range of the result is [].

See Also
abs , mod, sign

Name Type Description

x Complex Scalar,
Vector, or Matrix

The input argument.

y Scalar, Vector, or
Matrix

The principle value of the input argument.

θ

z re
iθ=

π– π,

Chapter 7 Function Reference — avgDev

HiQ Reference Manual 7-32 © National Instruments Corporation

avgDev

Purpose
Computes the average deviation of a data sample.

Usage
y = avgDev(x , xMean)

Parameters

Comments
The average deviation of an n-element data sample is the average absolute deviation of
elements in the sample from the mean of the sample and is defined as

This function executes faster if you provide the mean of the data sample in the parameter
xMean.

See Also
mean, stdDev

Name Type Description

x Real Vector The input data set.

xMean Real Scalar The mean of the input data set. (Optional.)

y Real Scalar The average deviation of the data set.

xi x–
i 1=

n

∑
n

Chapter 7 Function Reference — bandwidth

© National Instruments Corporation 7-33 HiQ Reference Manual

bandwidth

Purpose
Computes the lower and upper bandwidths of a matrix.

Usage
[mb, nb] = bandwidth(A , tolr)

Parameters

Comments
The lower bandwidth, mb, and upper bandwidth, nb, of the input matrix A are defined as
follows:

In other words, the upper bandwidth is the minimum super-diagonal that contains non-zero
elements, and the lower bandwidth is the minimum sub-diagonal that contains non-zero
elements. The optional parameter, tolr , can be used to specify an arbitrary tolerance on the
elements.

Examples
Determining the most efficient matrix storage type.
// Given a real matrix A storing all elements, convert the

// matrix to the storage type that is most efficient.

project A;

Name Type Description

A Matrix The input matrix.

tolr Real Scalar Tolerance used to determine zero elements.
(Optional. Default = 0.0)

mb Integer Scalar Lower bandwidth of the input matrix.

nb Integer Scalar Upper bandwidth of the input matrix.

mb min
p

such that aij 0 aij tolr≤() for all i j p+>=≡

nb min
q

such that aij 0 aij tolr≤() for all j i q+>=≡

Chapter 7 Function Reference — bandwidth

HiQ Reference Manual 7-34 © National Instruments Corporation

// Compute the current bandwidths of the adjusted matrix.

// The second input treats elements within an epsilon

// neighborhood of zero as zero.

[mb, nb] = bandwidth (A, <epsilon>);

// To compute the number of stored elements in the matrix,

// get the matrix dimensions.

[m, n] = dim(A);

// Select the storage type that would be most efficient.

if (m == n && (mb == 0 || nb == 0)) then

// The most efficient matrix type could be triangular...

if (.5*(m+1) < mb+nb+1) then

if (mb == 0) then

matrixType = <upperTri>;

else

matrixType = <lowerTri>;

end if;

else if (mb+nb+1 < m) then

matrixType = <band>;

else

matrixType = <rect>;

end if;

else if (mb+nb+1 < m) then

matrixType = <band>;

else

matrixType = <rect>;

end if;

// Now that the optimal storage type is known, convert

// the matrix.

if matrixType == <band> then

A = convert(A, matrixType, mb, nb);

else

A = convert(A, matrixType);

end if;

See Also
convert , dim , sparsity , vanish

Chapter 7 Function Reference — basis

© National Instruments Corporation 7-35 HiQ Reference Manual

basis

Purpose
Creates the Kronecker or Heaviside basis vector.

Usage
a = basis(n , type, i)

Parameters

Comments
The Kronecker and Heaviside vectors are used to form a basis in n-dimensional vector space.
The Kronecker vector is defined as

The Heaviside vector is defined as

This function returns a zero vector if the optional input parameter i is zero.

Name Type Description

n Integer Scalar The dimension of the vector.

type HiQ Constant The type of basis vector to create. (Optional.
Default = <kronecker >)

<heaviside>
<kronecker>

i Integer Scalar The basis index of the vector. (Optional.
Default = 1)

a Real Vector The n-dimensional basis vector.

ak
1 if k i=

0 if k i≠

=

ak
1 if k i≤
0 if k i>

=

Chapter 7 Function Reference — basis

HiQ Reference Manual 7-36 © National Instruments Corporation

Examples
Computing the local angular velocity in a moving fluid.
// Compute the local angular velocity at point P in a fluid

// moving with velocity field v.

// Define the velocity field.

v = {f:x:"x[1]* basis (3, <kronecker>, 2)"};

// Generate a computation point for the angular velocity.

point = createVector(3, <random>, -5, 5);

// Compute the angular velocity.

velocity = .5*curl(v, point);

See Also
createVector

Chapter 7 Function Reference — besselI

© National Instruments Corporation 7-37 HiQ Reference Manual

besselI

Purpose
Computes the modified Bessel function of the first kind.

Usage
y = besselI(x , order)

Parameters

Comments
The modified Bessel function of the first kind of order ν, or Iν, (also known as the general
hyperbolic Bessel function) is a solution of the differential equation

This function is defined over the interval () if order is an integer and the interval
(] if order is real.

See Also
airy , besselJ , besselK , besselY

Name Type Description

x Real Scalar The input argument.

order Integer or Real
Scalar

The order of the Bessel function. (Optional.
Default = 0)

y Real Scalar The value of the modified Bessel function of
the first kind.

x2 d
2
w

dx
2

--------- xdw
dx
------- x2 v2+()w–+ 0=

∞– ∞,
∞– 0,

Chapter 7 Function Reference — besselJ

HiQ Reference Manual 7-38 © National Instruments Corporation

besselJ

Purpose
Computes the Bessel function of the first kind.

Usage
y = besselJ(x , order)

Parameters

Comments
The Bessel function of the first kind of order ν, or Jν, is a solution of the differential equation

This function is defined over the interval () if order is an integer and the interval
(] if order is real.

See Also
airy , besselI , besselJs , besselK , besselY

Name Type Description

x Real or Complex
Scalar

The input argument.

order Integer or Real
Scalar

The order of the Bessel function. (Optional.
Default = 0)

y Real or Complex
Scalar

The value of the Bessel function of the
first kind.

x2 d
2
w

dx
2

--------- xdw
dx
------- x2 v2–()w+ + 0=

∞– ∞,
∞– 0,

Chapter 7 Function Reference — besselJs

© National Instruments Corporation 7-39 HiQ Reference Manual

besselJs

Purpose
Computes the spherical Bessel function of the first kind.

Usage
y = besselJs(x , order)

Parameters

Comments
The spherical Bessel function of the first kind of order n, jn, is a solution to the differential
equation

It is related to the Bessel function of the first kind by the following equation.

See Also
besselI , besselJ , besselK , besselY , besselYs

Name Type Description

x Real Scalar The input argument.

order Integer Scalar The order of the Bessel function. (Optional.
Default = 0)

y Real Scalar The value of the spherical Bessel function of
the first kind.

x2 d
2
w

dx
2

--------- 2xdw
dx
------- x2 n n 1+()–()w+ + 0=

j n x() π
2x
------Jv x() v, n 1

2
---+==

Chapter 7 Function Reference — besselK

HiQ Reference Manual 7-40 © National Instruments Corporation

besselK

Purpose
Computes the modified Bessel function of the second kind.

Usage
y = besselK(x , order)

Parameters

Comments
The modified Bessel function of the second kind of order v, or Kv, (also known as the Basset
function) is a solution of the differential equation

See Also
airy , besselI , besselJ , besselY

Name Type Description

x Real Scalar The input argument.

order Integer Scalar The order of the modified Bessel function.
(Optional. Default = 0)

y Real Scalar The value of the modified Bessel function of
the second kind.

x2 d
2
w

dx
2

--------- xdw
dx
------- x2 v2+()w–+ 0=

Chapter 7 Function Reference — besselY

© National Instruments Corporation 7-41 HiQ Reference Manual

besselY

Purpose
Computes the Bessel function of the second kind.

Usage
y = besselY(x , order)

Parameters

Comments
The Bessel function of the second kind of order v, or Yv, is a solution of the differential
equation

See Also
airy , besselI , besselJ , besselK , besselYs

Name Type Description

x Real or Complex
Scalar

The input argument.

order Integer or Real
Scalar

The order of the Bessel function. (Optional.
Default = 0)

y Real or Complex
Scalar

The value of the Bessel function of the
second kind.

x2 d
2
w

dx
2

--------- xdw
dx
------- x2 v2–()w+ + 0=

Chapter 7 Function Reference — besselYs

HiQ Reference Manual 7-42 © National Instruments Corporation

besselYs

Purpose
Computes the spherical Bessel function of the second kind.

Usage
y = besselYs(x , order)

Parameters

Comments
The spherical Bessel function of the second kind of order n, or jn, is a solution to the
differential equation

It is related to the Bessel function of the second kind by the following equation.

 where

See Also
besselI , besselJ , besselJs , besselK , besselY

Name Type Description

x Real Scalar The input argument.

order Integer Scalar The order of the Bessel function. (Optional.
Default = 0)

y Real Scalar The value of the spherical Bessel function of
the second kind.

x2 d
2
w

dx
2

--------- 2xdw
dx
------- x2 n n 1+()–()w+ + 0=

yn z() π
2z
-----Yv z()= v n 1

2
---+=

Chapter 7 Function Reference — beta

© National Instruments Corporation 7-43 HiQ Reference Manual

beta

Purpose
Computes the beta function.

Usage
Computes the complete beta function.

z = beta(x, y)

Computes the incomplete beta function.
z = beta(x, y, a)

Parameters

Comments
The beta function is defined by the following equation.

The incomplete beta function is defined by the following equation.

See Also
digamma, gamma

Name Type Description

x Real Scalar The first argument of the beta function

y Real Scalar The second argument of the beta function.

a Real Scalar The upper limit of the incomplete beta integral.

z Real Scalar The value of the beta function.

β x y,() t
x 1– 1 t–()y 1–

td

0

1

∫=

Ia x y a, ,() 1
β x y,()
---------------- t

x 1– 1 t–()y 1–
td

0

a

∫=

Chapter 7 Function Reference — cbrt

HiQ Reference Manual 7-44 © National Instruments Corporation

cbrt

Purpose
Computes the cube root of a number.

Usage
y = cbrt(x)

Parameters

Comments
The cube root y of a number x is defined as

Examples
Computing all three cube roots.
// Define an extension to cube root that computes the 3

// cube roots, including the complex ones.

// Define the generic root function that computes the k-th

// root factor for x^1/3.

function cbrtK(x, k)

t = <pi>*(.5*(1.0 - sign(x)) + 2.0*k)/3.0;

return cos(t) - <i>*sin(t);

end function;

// Define the function that computes the 3 cube roots.

function cbrt3(x)

// Specify that the user function cbrtK() will be called.

project cbrtK;

// Each computed k-th factor is multiplied by cbrt (|x|).

cbrtAbs = cbrt (abs(x));

Name Type Description

x Real Scalar The input argument.

y Real Scalar The cube root of the input argument.

y x3=

Chapter 7 Function Reference — cbrt

© National Instruments Corporation 7-45 HiQ Reference Manual

// Compute the k-th roots for k = 0, 1, 2.

root0 = cbrtAbs*cbrtK(x, 0);

root1 = cbrtAbs*cbrtK(x, 1);

root2 = cbrtAbs*cbrtK(x, 2);

// Return the three computed roots using multiple returns.

return root0, root1, root2;

end function;

// Try out the new cube root extension on an input.

x = random(-10, 10);

[x1, x2, x3] = cbrt3(x);

// Display the results.

message("The three cube roots of " + totext(x) + " are: " + <lf> +

" " + totext(x1) + <lf> +

" " + totext(x2) + <lf> +

" " + totext(x3));

See Also
sqrt

Chapter 7 Function Reference — CDF

HiQ Reference Manual 7-46 © National Instruments Corporation

CDF

Purpose
Computes the cumulative distribution function.

Usage
Computes the cumulative distributions requiring one parameter.

y = CDF(x, aType, a)

Computes the cumulative distributions requiring two parameters.
y = CDF(x, bType, a, b)

Parameters

Name Type Description

x Integer or Real
Scalar

The input argument.

aType HiQ Constant The distribution type requiring a single
parameter.

<chiSq>
<student>
<geometric>
<poisson>

a Real Scalar The first distribution parameter.

bType HiQ Constant The distribution type requiring two parameters.

<beta>
<cauchy>
<exponential>
<f>
<gamma>
<normal>
<weibull>
<binomial>
<negBinomial>

b Real Scalar The second distribution parameter.

y Real Scalar The value of the cumulative distribution.

Chapter 7 Function Reference — CDF

© National Instruments Corporation 7-47 HiQ Reference Manual

Comments
The cumulative distributions are defined by the following equations.

CDF(x, <chiSq>, a)

CDF(x, <student>, a)

CDF(k, <geometric>, a)

CDF(k, <poisson>, a)

CDF(x, <beta>, a, b)

CDF(x, <cauchy>, a, b)

CDF(x, <exp>, a, b)

CDF(x, <f>, a, b)

1

2

a
2

Γ a
2

------------------ z

a
2
--- 1–

e

z–
2

zd

0

x

∫

Γ a 1+
2

aπ()
1
2

Γ a
2

--------------------------- 1 z

2

a
----+

a 1+

2
------------–

zd

∞–

x

∫

a 1 a–() i

i 0=

k

∑

e
a–
a

i

k!

i 0=

k

∑

1
β a b,()
----------------- t

a 1– 1 t–()b 1–
td

0

x

∫

1

πb 1 t a–
b

 2

+

-- td

∞–

x

∫

1
b
---e

t a–
b

 –

td

a

x

∫

a

a
2

b

b
2

B a b,()
----------------- t

a
2
--- 1–

b at+()a b+
---------------------------- td

0

x

∫

Chapter 7 Function Reference — CDF

HiQ Reference Manual 7-48 © National Instruments Corporation

See Also
PDF

CDF(x, <gamma>, a, b)

CDF(x, <normal>, a, b)

CDF(x, <weibull>, a, b)

CDF(k, <binomial>, a, b)

CDF(k, <negBinomial>, a, b)

a
b

Γ b()
----------- z

b 1–
e

az–
zd

0

x

∫

1

2πb
-------------- e

t a–()2

2b2

td

0

x

∫

ab t
a 1–

e
bta–

td

0

x

∫

n

m
 pm 1 p–()n m–

m 0=

k

∑

n m 1–+

m
 p

n
1 p–()m

m 0=

k

∑

Chapter 7 Function Reference — ceil

© National Instruments Corporation 7-49 HiQ Reference Manual

ceil

Purpose
Rounds a number towards positive infinity.

Usage
y = ceil(x)

Parameters

Comments
For vectors and matrices, ceil(x) returns the ceiling of the input on an element-by-element
basis.

Examples
Computing the ceiling of a vector of data.
// Generate two step functions that 'surround' a

// data set and graph the results.

// Create a set of 500 points in (-5, 5) sorted by size.

data = createVector(25, <random>, 1, 25, <uniform>);

data = sort(data);

// Create the graph and plot the generated data.

[graph, plotData] = createGraph(data);

// Once the graph is created, add the plots of the

// upper and lower bounds for the data.

plotTop = addPlot(graph, ceil (data));

plotBottom = addPlot(graph, floor(data));

Name Type Description

x Real Scalar, Vector,
or Matrix

The input argument.

y Real Scalar, Vector,
or Matrix

The ceiling of the input argument.

Chapter 7 Function Reference — ceil

HiQ Reference Manual 7-50 © National Instruments Corporation

// Change the plot color and style to make the plots

// easier to distinguish.

graph.plot(plotData).style = <point>;

graph.plot(plotData).point.size = 2;

graph.plot(plotTop).line.color = <ltblue>;

graph.plot(plotBottom).line.color = <red>;

See Also
floor , round

Chapter 7 Function Reference — changePlotData

© National Instruments Corporation 7-51 HiQ Reference Manual

changePlotData

Purpose
Changes the data associated with a plot object without changing the attributes of the plot
object.

Usage
Changes the data in a 2D curve plot.

changePlotData(plot, y)

changePlotData(plot, x, y)

changePlotData(plot, x, yFct)

Changes the data in a 3D surface plot.
changePlotData(plot, Z , colorMap)

changePlotData(plot, x, y, Z , colorMap)

changePlotData(plot, x, y, ZFct , colorMap)

Changes the data in a 3D parametric curve plot.
changePlotData(plot, x, y, z , colorMap)

changePlotData(plot, xFct, yFct, zFct, tParam , colorMap)

Changes the data in a 3D parametric surface plot.
changePlotData(plot, X, Y, Z , colorMap)

changePlotData(plot, XFct, YFct, ZFct, uParam, vParam , colorMap)

Parameters

Name Type Description

plot 2D or 3D Plot The plot object that will contain the new data.

y Real Vector The y data set for a 2D or 3D curve or a 3D
surface plot.

x Real Vector The x data set for a 2D or 3D curve or a 3D
surface plot.

yFct Function The y function to evaluate for a 2D curve or a
3D parametric curve plot.

Z Real Matrix The z data set for a 3D surface or parametric
surface plot.

Chapter 7 Function Reference — changePlotData

HiQ Reference Manual 7-52 © National Instruments Corporation

Comments
Use this function to change the data in an existing plot object. All graphs that link with the
specified plot reflect the new data the next time the graph is redrawn. When the x-axis data is
not supplied in a 2D plot or the x-axis and y-axis data are not supplied in a 3D plot, HiQ uses
the positive integers. For 3D plots, the z data set, or the color map if provided, is used to
determine the color of the plot. Use the colorMap.style property of the plot to define the
color palette.

To change the data in an embedded plot, use addPlot .

See Also
addPlot , createPlot , removePlot

colorMap Real Vector or
Matrix

Set of data defining the color map values to
use. Must have the same dimensions as the 3D
z data. (Optional.)

ZFct Function The z function to evaluate for a 3D surface or
parametric surface plot.

z Real Vector The z data set for a 3D curve.

xFct Function The x function to evaluate for a 3D parametric
curve plot.

zFct Function The z function to evaluate for a 3D parametric
curve plot.

tParam Real Vector The t parametric data for a 3D parametric
curve.

X Real Matrix The x data set for a 3D parametric surface.

Y Real Matrix The y data set for a 3D parametric surface.

XFct Function The x function to evaluate for a 3D parametric
surface plot.

YFct Function The y function to evaluate for a 3D parametric
surface plot.

uParam Real Vector The u parametric data for a 3D parametric
surface.

vParam Real Vector The v parametric data for a 3D parametric
surface.

Name Type Description

Chapter 7 Function Reference — choleskyD

© National Instruments Corporation 7-53 HiQ Reference Manual

choleskyD

Purpose
Computes the Cholesky decomposition of a symmetric, positive definite matrix.

Usage
L = choleskyD(A)

Parameters

Comments
If a matrix A is real symmetric or complex Hermitian and positive definite, the decomposition

is called the Cholesky decomposition where L is a lower triangular matrix, LT is the transpose
of L , and L H is the complex conjugate transpose (Hermitian) of L . It is a special case of the
LU decomposition.

This function assumes the matrix A is symmetric or Hermitian and only uses the lower
triangular elements of the matrix. If A is not positive definite, HiQ generates an error.

Examples
Solving a symmetric, positive definite linear system.
This example shows how to solve a linear system, taking advantage of the symmetric, positive
definite properties of the system matrix.

//Solving a symmetric, positive definite linear system.

//Create a 5x5 Moler matrix. The Moler matrix is

//symmetric and positive definite.

A = createMatrix(5,5,<moler>);

Name Type Description

A Matrix A square nxn matrix.

L Matrix The Cholesky decomposition of the input
matrix.

A LL T= if A is real

A L= L H if A is complex

Chapter 7 Function Reference — choleskyD

HiQ Reference Manual 7-54 © National Instruments Corporation

//Create the vector b from 1 to 5.

b = seq(5);

//Compute the decomposition (LL') of the

//symmetric, positive definite matrix A.

L = choleskyD (A);

//Solve the system Ax = b using the symmetric, positive

//definite decomposition matrix L.

x = solve(L,b,<choleskyD>);

See Also
LUD, solve , symD

Chapter 7 Function Reference — clearLog

© National Instruments Corporation 7-55 HiQ Reference Manual

clearLog

Purpose
Clears the Log Window.

Usage
clearLog()

Comments
To save the contents of the Log Window before clearing, call saveLog with the name of the
file to store the contents.

See Also
logMessage , saveLog

Chapter 7 Function Reference — close

HiQ Reference Manual 7-56 © National Instruments Corporation

close

Purpose
Closes an open file.

Usage
close(fid)

Parameters

Comments
Files are automatically closed when a script finishes running. Use the open function to open
a file.

See Also
open

Name Type Description

fid Integer Scalar The file ID of the open file to close.

Chapter 7 Function Reference — compose

© National Instruments Corporation 7-57 HiQ Reference Manual

compose

Purpose
Computes the composition of two polynomials or permutations.

Usage
z = compose(x, y)

Parameters

Comments
The composition s of two polynomials p and q is defined by the equation

s = p(q(x))

where the degree of s is equal to the sum of the degrees of p and q. The polynomial q replaces
the independent variable of p.

The resulting composition polynomial is normalized. (The leading coefficient of the
polynomial is equal to one.)

The composition s of two n-element permutation vectors p and q is defined as

For more information on permutation vectors, see permu .

See Also
divide , inv , permu

Name Type Description

x Polynomial or
Integer Vector

The first polynomial or permutation to
compose.

y Polynomial or
Integer Vector

The second polynomial or permutation to
compose.

z Polynomial or
Integer Vector

The resulting composition.

si pqi 1 1 … n,,=,=

Chapter 7 Function Reference — cond

HiQ Reference Manual 7-58 © National Instruments Corporation

cond

Purpose
Computes the condition number of a matrix.

Usage
x = cond(A , nType)

Parameters

Comments
The condition number x of a matrix A is defined as

where is the norm of the matrix A . This number is an important characteristic in the
analysis of the accuracy of the solution to a linear system . This function uses
different methods depending on the value of nType . For example, the condition number based
on L2 norm is computed more efficiently using singular values rather than a strict
implementation of the formula above.

See Also
norm

Name Type Description

A Matrix The input matrix.

nType HiQ Constant The norm to use for the condition. (Optional.
Default = <L2>)

<L1>
<L2>
<L2sq>
<frob>

x Real Scalar The condition number of the input matrix.

x A A 1–=

A
Ax y=

Chapter 7 Function Reference — conj

© National Instruments Corporation 7-59 HiQ Reference Manual

conj

Purpose
Computes the complex conjugate of a number.

Usage
y = conj(x)

Parameters

Comments
For vectors and matrices, conj(x) returns the complex conjugate of the input on an
element-by-element basis.

Examples
Sorting the roots of a polynomial according to magnitude.
// Order the roots returned from the polynomial root solver in

// descending order according to the root magnitudes.

// Create an example polynomial used to generate the roots.

poly = {poly: "x^5 + x^3 - 2x - 5"};

// Compute the roots of the polynomial.

proots = roots(poly);

// Generate the sorting index based on the root magnitudes.

// Designate the object rootsAbs as local so it will be freed

// after execution is complete.

local rootsAbs;

[rootsAbs,index] = sort(abs(proots));

// Sort the original set of roots based on the sort index.

proots = sort(proots, index);

Name Type Description

x Complex Scalar,
Vector, or Matrix

The input argument.

y Complex Scalar,
Vector, or Matrix

The complex conjugate of the input argument.

Chapter 7 Function Reference — conj

HiQ Reference Manual 7-60 © National Instruments Corporation

// Now make sure that the complex root pairs are ordered by

// ..., a - bi, a + bi, ...

i = 1;

while i < rootsAbs.size do

// Check the ordering of a root pair.

if abs(rootsAbs[i] - rootsAbs[i+1]) < <epsilon> then

local proot = proots[i];

// If the order is incorrect, swap them.

// Otherwise, jump to the next potential pair.

if (sign(proot.i) > 0) then

proots[i] = conj (proots[i]);

proots[i+1] = conj (proots[i+1]);

else

i = i + 2;

end if;

// Look for the next pair starting with the next root.

else

i = i + 1;

end if;

end while;

See Also
trans

Chapter 7 Function Reference — convert

© National Instruments Corporation 7-61 HiQ Reference Manual

convert

Purpose
Converts a numeric object to another object type or converts the structure of a matrix object.

Usage
Converts a vector object to a matrix object.

B = convert(a, m, n)

Converts a matrix object to a vector object.
b = convert(A)

Converts the structure of a matrix object to the specified structure.
B = convert(A, mType)

Converts the structure of a matrix object to banded structure.
B = convert(A, <band> , mb, nb)

Parameters

Name Type Description

a Vector The input vector.

m Integer Scalar The number of rows to create.

n Integer Scalar The number of columns to create.

A Matrix The input matrix.

mType HiQ Constant The storage type of the resulting matrix.

<rect>
<upperTri>
<lowerTri>
<symmetric>
<hermitian>
<band>

mb Integer Scalar The lower bandwidth dimension of a banded
matrix. (Optional. Default = 0)

nb Integer Scalar The upper bandwidth dimension of a banded
matrix. (Optional. Default = 0)

B Matrix The resulting matrix.

b Vector The resulting vector.

Chapter 7 Function Reference — convert

HiQ Reference Manual 7-62 © National Instruments Corporation

Comments
When you convert an matrix A to a vector b, the vector contains mn elements.
HiQ creates the vector using the row elements of the matrix as in the following equation.

When you convert a k-element vector b to an matrix A, HiQ creates the matrix
row-by-row using the elements of the vector as in the following equation.

If , the remaining elements of the matrix are set to zero. If , the extra elements
in the vector are not used.

You can use the function convert to change the structural properties of a matrix. This
function sets the values of the appropriate matrix elements to reflect the desired structure.
When possible, HiQ stores the matrix more efficiently and uses faster algorithms for built-in
functions. This function supports the following matrix structures.

HiQ Constant Structure Comments

<rect> Rectangular. No special
structure.

<symmetric> Symmetric. The lower triangle of
the matrix is used to create the
symmetric matrix.

<hermitian> Hermitian. The lower triangular
elements are used to create the
Hermitian matrix.

m n×

bn i 1–() j+ Aij i 1 2 … m j 1 2 … n, , ,=;, , ,=,=

m n×

Aij bn i 1–() j+ i 1 2 … m j 1 2 … n, , ,=;, , ,=,=

k mn< k mn>

a11 a21 … an1

a21 a22 an2

... . . .
...

an1 an2 … ann

a11 a21
* … an1

*

a21 a22 an2
*

...
an1 an2 … ann

Chapter 7 Function Reference — convert

© National Instruments Corporation 7-63 HiQ Reference Manual

Some linear algebra operations and built-in functions do not maintain the structural properties
of a matrix. For example, if you assign a non-zero value to an element in the upper triangular
portion of a matrix with lower triangular properties, the matrix loses its lower triangular
structure.

You can use the function bandwidth to compute the upper and lower bandwidths of a matrix
before converting the matrix to banded structure as in the following script.

[mb, nb] = bandwidth(A, tolr);

B = convert(A, <band>, mb, nb);

Examples
Determining the most efficient matrix storage type.
// Given a real matrix A storing all elements, convert the

// matrix to the storage type that is most efficient.

project A;

<lowerTri> Lower triangular. The upper
triangular elements are set to
zero.

<upperTri> Upper triangular. The lower
triangular elements are set to
zero.

<band> Banded. The diagonal elements
above the upper diagonal and
below the lower diagonal are set
to zero.

HiQ Constant Structure Comments

a11 0 … 0

a21 a22 0
...

an1 an2 … ann

a11 a21 … an1

0 a22 an2

...
0 0 … ann

a11 … a1u 0 … 0
... . . .

.
al 1 . . . 0

0 . . .
...

.
0 … 0 … ann

Chapter 7 Function Reference — convert

HiQ Reference Manual 7-64 © National Instruments Corporation

// Compute the current bandwidths of the adjusted matrix.

// The second input treats elements within an epsilon

// neighborhood of zero as zero.

[mb, nb] = bandwidth(A, <epsilon>);

// To compute the number of stored elements in the matrix,

// get the matrix dimensions.

[m, n] = dim(A);

// Select the storage type that would be most efficient.

if (m == n && (mb == 0 || nb == 0)) then

// The most efficient matrix type could be triangular...

if (.5*(m+1) < mb+nb+1) then

if (mb == 0) then

matrixType = <upperTri>;

else

matrixType = <lowerTri>;

end if;

else if (mb+nb+1 < m) then

matrixType = <band>;

else

matrixType = <rect>;

end if;

else if (mb+nb+1 < m) then

matrixType = <band>;

else

matrixType = <rect>;

end if;

// Now that the optimal storage type is known, convert

// the matrix.

if matrixType == <band> then

A = convert (A, matrixType, mb, nb);

else

A = convert (A, matrixType);

end if;

See Also
createMatrix

Chapter 7 Function Reference — cor

© National Instruments Corporation 7-65 HiQ Reference Manual

cor

Purpose
Computes the correlation of two data samples.

Usage
z = cor(x, y , xMean, yMean)

Parameters

Comments
The correlation of two data sets x and y is defined as

where represents the standard deviation.

This function executes faster if you provide the mean of the data samples in the parameters
xMean and yMean.

See Also
cov , mean, stdDev

Name Type Description

x Real Vector The first data set.

y Real Vector The second data set.

xMean Real Scalar The mean of the first data set. (Optional.)

yMean Real Scalar The mean of the second data set. (Optional.)

z Real Scalar The correlation of the two data sets.

cov x y,()
σxσy

σ

Chapter 7 Function Reference — cos

HiQ Reference Manual 7-66 © National Instruments Corporation

cos

Purpose
Computes the cosine.

Usage
y = cos(x)

Parameters

Comments
The cosine is defined for the real domain ().

See Also
arccos , cosh , sin

Name Type Description

x Real or Complex
Scalar

The input angle in radians.

y Real or Complex
Scalar

The cosine of the input.

∞ ∞,–

Chapter 7 Function Reference — cosh

© National Instruments Corporation 7-67 HiQ Reference Manual

cosh

Purpose
Computes the hyperbolic cosine.

Usage
y = cosh(x)

Parameters

Comments
The hyperbolic cosine is defined for the real domain ().

Examples
Computing the shape of a rope hanging between two points.
// When a heavy rope or chain is hung between two points

// with equivalent horizon, the shape made by the rope or

// chain is known as a catenary. To construct this shape,

// only two basic elements are required: the length of the

// rope or chain and the distance between the hanging points.

// Provide a sample length and distance for a catenary.

L = 3;

h = 1;

// The formula used to compute the catenary is based on a

// single constant b related to L and h by bL = 2*sinh(bh/2).

// Solving for b is not direct, so optimization is used to

// compute it. Define the function to optimize.

bFct = {f:x:"x[1]*L - 2*sinh(.5*x[1]*h)"};

// Find b within a tolerance of 1e-4. Make an initial guess

// for b of 1.

b = optimize(bFct, {v: L - 2*sinh(.5*h)});

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The hyperbolic cosine of the input.

∞ ∞,–

Chapter 7 Function Reference — cosh

HiQ Reference Manual 7-68 © National Instruments Corporation

// Use the computed b constant to define the catenary

// function. We define the catenary so that the lowest

// point corresponds with x = 0.

function catenary(x)

// Let the function know that b and h, which are defined outside this

// function, will be used.

 project b, h;

 // By our definition, the catenary is only defined

 // between the hanging points, i.e., [-.5*h, .5*h]

 if (abs(x) > .5*h) then

 return <nan>;

 // Compute the catenary at point x.

 else

 return (cosh (b*x) - cosh (b*h))/b;

 end if;

end function;

// Generate a temporary set of evaluation points for the domain.

// Defining it as local frees it up after execution.

local domain = seq(-.5*h, .5*h, 100, <pts>);

// Graph the catenary over the provided domain.

catenaryGraph = createGraph(domain, catenary);

// Make the graph reflect the physical nature of the problem.

catenaryGraph.axis.y.range.inverted = true;

catenaryGraph.border.visible = <off>;

catenaryGraph.axes.majorgrid.visible = <off>;

catenaryGraph.plots.style = <point>;

catenaryGraph.plots.point.style = <emptycircle>;

catenaryGraph.plots.point.size = 6;

See Also
arccosh , cos , sinh

Chapter 7 Function Reference — coshI

© National Instruments Corporation 7-69 HiQ Reference Manual

coshI

Purpose
Computes the hyperbolic cosine integral function.

Usage
y = coshI(x)

Parameters

Comments
The hyperbolic cosine integral is defined by the following equation where represents
Euler’s constant.

See Also
cosI , sinhI

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the hyperbolic cosine integral.

γ

I x()cosh γ xln t() 1–cosh
t

--------------------------- td

0

x

∫+ +=

Chapter 7 Function Reference — cosI

HiQ Reference Manual 7-70 © National Instruments Corporation

cosI

Purpose
Computes the cosine integral function.

Usage
y = cosI(x)

Parameters

Comments
The cosine integral is defined by the following equation where represents Euler’s constant.

See Also
coshI , expI , sinI

Name Type Description

x Real Scalar The input argument (x > 0).

y Real Scalar The value of the cosine integral.

γ

Icos x() γ xln t() 1–cos
t

------------------------ td

0

x

∫+ +=

Chapter 7 Function Reference — cot

© National Instruments Corporation 7-71 HiQ Reference Manual

cot

Purpose
Computes the cotangent.

Usage
y = cot(x)

Parameters

Comments
The cotangent is defined for the domain (), .

See Also
arccot , coth , tan

Name Type Description

x Real or Complex
Scalar

The input angle in radians.

y Real or Complex
Scalar

The cotangent of the input.

∞ ∞,– x nπ±≠

Chapter 7 Function Reference — coth

HiQ Reference Manual 7-72 © National Instruments Corporation

coth

Purpose
Computes the hyperbolic cotangent.

Usage
y = coth(x)

Parameters

Comments
The hyperbolic cotangent is defined for the domain (), .

See Also
arccoth , cot , tanh

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The hyperbolic cotangent of the input.

∞ ∞,– x 0≠

Chapter 7 Function Reference — cov

© National Instruments Corporation 7-73 HiQ Reference Manual

cov

Purpose
Computes the covariance of two data samples.

Usage
z = cov(x, y , xMean, yMean)

Parameters

Comments
The covariance of two n-element sample sets u and v is defined as

This function executes faster if you provide the mean of the data samples in the parameters
xMean and yMean.

See Also
cov , mean, var

Name Type Description

x Real Vector The first data set.

y Real Vector The second data set.

xMean Real Scalar The mean of the first data set. (Optional.)

yMean Real Scalar The mean of the second data set. (Optional.)

z Real Scalar The covariance of the two data sets.

cov x y,()
xi x–() yi y–()

n 1–

i 1=

n

∑=

Chapter 7 Function Reference — createGraph

HiQ Reference Manual 7-74 © National Instruments Corporation

createGraph

Purpose
Creates a new 2D or 3D graph.

Usage
Creates an empty 2D or 3D graph.

graph = createGraph(graphType)

Creates a 2D graph with a curve plot.
[graph, plotID] = createGraph(y)

[graph, plotID] = createGraph(x, y)

[graph, plotID] = createGraph(x, yFct)

Creates a 3D graph with a surface plot.
[graph, plotID] = createGraph(Z , colorMap)

[graph, plotID] = createGraph(x, y, Z , colorMap)

[graph, plotID] = createGraph(x, y, ZFct , colorMap)

Creates a 3D graph with a parametric curve plot.
[graph, plotID] = createGraph(x, y, z , colorMap)

[graph, plotID] = createGraph(tParam, xFct, yFct, zFct , colorMap)

Creates a 3D graph with a parametric surface plot.
[graph, plotID] = createGraph(X, Y, Z , colorMap)

[graph, plotID] = createGraph(uParam, vParam, XFct, YFct, ZFct ,

colorMap)

Parameters

Name Type Description

graphType HiQ Constant The graph dimension.

<graph2D >—2D graph.
<graph3D >—3D graph.

y Real Vector The y data set for a 2D or 3D curve or a
3D surface plot.

x Real Vector The x data set for a 2D or 3D curve or a
3D surface plot.

yFct Function The y function to evaluate for a 2D curve or
3D parametric curve plot.

Chapter 7 Function Reference — createGraph

© National Instruments Corporation 7-75 HiQ Reference Manual

Comments
When used to create a graph containing a plot, createGraph adds the plot directly into the
graph without creating a separate plot object. To add another plot directly into an existing
graph, use addPlot . To create a plot object and add it to the graph, use createPlot and
addPlot. Use removePlot to remove any or all plots from the graph.

Z Real Matrix The z data set for a 3D surface or parametric
surface plot.

colorMap Real Matrix Set of data defining the color map values to
use. Must have the same dimensions as the
3D z data. (Optional.)

ZFct Function The z function for a 3D surface or parametric
surface plot.

z Real Vector The z data set for a 3D curve.

tParam Real Vector The parametric data for a 3D parametric curve.

xFct Function The x function to evaluate for a 3D parametric
curve plot.

zFct Function The z function to evaluate for a 3D parametric
curve plot.

X Real Matrix The x data set for a 3D parametric surface plot.

Y Real Matrix The y data set for a 3D parametric surface plot.

uParam Real Vector The u parametric data for a 3D parametric
surface.

vParam Real Vector The v parametric data for a 3D parametric
surface.

XFct Function The x function for a 3D parametric
surface plot.

YFct Function The y function for a 3D parametric
surface plot.

graph 2D or 3D Graph The new graph.

plotID Integer Scalar A handle representing the plot in the graph.

Name Type Description

Chapter 7 Function Reference — createGraph

HiQ Reference Manual 7-76 © National Instruments Corporation

When the x-axis data is not supplied in a 2D plot or the x-axis and y-axis data are not supplied
in a 3D plot, HiQ uses the positive integers.

For 3D plots, the z data set, or the color map if provided, is used to determine the color of the
plot. Use the colorMap.style property of the plot to define the color palette.

Examples
1. Creating a 2D graph with a data plot (HiQ-Script).
This example demonstrates how to quickly graph a vector of data.

//Create a vector of x data.

x = seq(-<pi>,<pi>,.1);

//Create a vector of y data.

y = cos(x);

//Create a new graph with a new plot of the vector y.

myGraph = createGraph (x,y);

2. Creating a 2D graph with a function plot (HiQ-Script).
This example demonstrates how to quickly graph a function.

//Create a vector of x data with 100 points.

x = seq(-<pi>,<pi>,2*<pi>/100);

//Create a new graph with a new plot of the function sinh.

//Any function parameter (like sinh) must be a

//single-input, single-output function.

myGraph = createGraph (x,sinh);

See Also
addPlot , createPlot , removePlot

Chapter 7 Function Reference — createInterface

© National Instruments Corporation 7-77 HiQ Reference Manual

createInterface

Purpose
Creates an ActiveX Interface object.

Usage
object = createInterface(type)

Parameters

Comments
The parameter type consists of two parts:

Application.object

Application refers to an ActiveX application that exposes one or more top-level object
classes. Object refers to one of the applications object classes. For example, Microsoft Word
exposes an application object you can use from HiQ. The following HiQ-Script creates an
interface to a Word applications object.

word = createInterface(“word.application”)

You then can access the methods and properties using the object word .

Name Type Description

type Text The type of object to create.

object Object The interface to an ActiveX object.

Chapter 7 Function Reference — createMatrix

HiQ Reference Manual 7-78 © National Instruments Corporation

createMatrix

Purpose
Creates a variety of special matrices.

Usage
Creates a matrix initialized with specific values.

A = createMatrix(m, n, mType)

A = createMatrix(m, n, <fill>, a)

A = createMatrix(m, n, <random>, a, b, <uniform>)

A = createMatrix(m, n, <random>, xMean, xStddev, <normal>)

A = createMatrix(m, n, <random>, k, <exp>)

A = createMatrix(m, n, <random>, p, <bernoulli>)

Creates a matrix with a specified storage type.
A = createMatrix(m, n, stType)

A = createMatrix(m, n, <band>, mb, nb)

Creates the specified matrix.
A = createMatrix(n, n, spType)

A = createMatrix(n, n, <toeplitz>, v)

A = createMatrix(n, n, <vandermonde>, v)

A = createMatrix(n, n, <hankel>, v)

A = createMatrix(n, n, <gram>, M)

Parameters

Name Type Description

m Integer Scalar The number of rows to create.

n Integer Scalar The number of columns to create.

mType HiQ Constant Specifies how to initialize the matrix.

<seq>
<random>
<ident>
<fill>

a Scalar The fill value used to initialize the elements of
the matrix or the lower range of the uniform
distribution.

b Scalar The upper range of the uniform distribution.

Chapter 7 Function Reference — createMatrix

© National Instruments Corporation 7-79 HiQ Reference Manual

Comments
The function createMatrix performs faster than HiQ-Script for creating a matrix
containing constant, random, or special values.

xMean Real Scalar The mean of the normal distribution.

xStddev Real Scalar The standard deviation of the normal
distribution.

k Real Scalar The reciprocal of the average of the
exponential distribution.

p Real Scalar The probability of ones occurring in the
distribution.

stType HiQ Constant The storage type of the matrix.

<rect>
<band>
<lowerTri>
<upperTri>
<symmetric>

mb Integer Scalar The upper bandwidth of the band matrix.

nb Integer Scalar The lower bandwidth of the band matrix.

spType HiQ Constant Specifies what kind of real matrix to generate.

<hilbert>
<kahanU>
<kahanL>
<frank>
<moler>
<dingdong>
<bordered>
<wilkMinus>
<wilkPlus>

v Real Vector Additional input required for types
<toeplitz> , <vandermonde> , and
<hankel> .

M Real Matrix Additional input required for type <gram> .

A Matrix The resulting matrix.

Name Type Description

Chapter 7 Function Reference — createMatrix

HiQ Reference Manual 7-80 © National Instruments Corporation

In some cases you can improve memory usage and increase the performance of matrix
operations by creating a matrix that takes advantage of certain structural properties. When
possible, HiQ stores the matrix more efficiently and uses faster algorithms for built-in
functions. Some linear algebra operations and built-in functions do not maintain the structural
properties of a matrix. For example, if you assign a value to an element in the upper triangular
portion of a matrix with lower triangular properties, the matrix loses its lower triangular
structure.

This function can create a variety of matrices containing special values. The available special
matrix values appear in the following table:

Constant Name Expression Description

<bordered>

Arrow-headed,
symmetric,
degenerate.

<diagonal>
eigenvalues =
1, 2, 3, . . . , n

<dingdong>
Symmetric,
eigenvalues cluster.

<frank>
Relatively
well-conditioned.

<gram>

bi and bj are the ith and
jth columns of the input
matrix B.

<hankel>
dim(b) = 2n–1, vector
b is given.

<hilbert>
Positive definite, very
ill-conditioned.

<kahanU>
Ill-conditioned, upper
triangular.

aij

1 if i j=

21 i– if i n j n i j≠,=,=

0 otherwise

=

aij
i if i j=

0 otherwise

=

aij
0.5

n i– j– 1.5+
--------------------------------=

aij min i j,()=

aij b i
Tb j=

aij b i j 1–+=

aij
1

i j 1–+
------------------=

aij

1 if i j=

1– if i j<
0 otherwise

=

Chapter 7 Function Reference — createMatrix

© National Instruments Corporation 7-81 HiQ Reference Manual

Examples
Creating a special matrix (HiQ-Script).
This example shows how to solve a symmetric, positive definite linear system.

//Solving a symmetric, positive definite linear system.

//Create a 5x5 Moler matrix. The Moler matrix is

//symmetric and positive definite.

A = createMatrix (5,5,<moler>);

<kahanL>
Ill-conditioned, lower
triangular.

<moler>
Positive definite, one
small eigenvalue.

<toeplitz>
Toeplitz matrix, vector
b is given.

<vandermonde>

Ill-conditioned,
dim(b) = n,
vector b is given.

<wilkPlus>

Symmetric,
tri-diagonal, for odd n
has pairs of close
eigenvalues.

<wilkMinus>

Symmetric,
tri-diagonal, for odd n
has pairs of close
eigenvalues.

Constant Name Expression Description

aij

1 if i j=

1– if i j>
0 otherwise

=

aij
i if i j=

min i j,() 2– otherwise

=

aij bn i j–+=

aij b j
i 1–=

aij

n
2
--- 1 min i n i– 1+,()–+ if i j=

1 if i j– 1=

0 otherwise

=

aij

n
2
--- 1 i–+ if i j=

1 if i j– 1=

0 otherwise

=

Chapter 7 Function Reference — createMatrix

HiQ Reference Manual 7-82 © National Instruments Corporation

//Create the vector b from 1 to 5.

b = seq(5);

//Compute the decomposition (LL') of the

//symmetric, positive definite matrix A.

L = choleskyD(A);

//Solve the system Ax = b using the symmetric, positive

//definite decomposition matrix L.

x = solve(L,b,<choleskyD>);

See Also
createVector , diag , ident , ones

Chapter 7 Function Reference — createPlot

© National Instruments Corporation 7-83 HiQ Reference Manual

createPlot

Purpose
Creates a new 2D or 3D plot object.

Usage
Creates a 2D curve plot.

plot = createPlot(y)

plot = createPlot(x, y)

plot = createPlot(x, yFct)

Creates a 3D surface plot.
plot = createPlot(Z , colorMap)

plot = createPlot(x, y, Z , colorMap)

plot = createPlot(x, y, ZFct , colorMap)

Creates a 3D parametric curve plot.
plot = createPlot(x, y, z , colorMap)

plot = createPlot(xFct, yFct, zFct, tParam , colorMap)

Creates a 3D parametric surface plot.
plot = createPlot(X, Y, Z , colorMap)

plot = createPlot(XFct, YFct, ZFct, uParam, vParam , colorMap)

Parameters

Name Type Description

y Real Vector The y data set for a 2D or 3D curve or a
3D surface plot.

x Real Vector The x data set for a 2D or 3D curve or a
3D surface plot.

yFct Function The y function to evaluate for a 2D curve or a
3D parametric curve plot.

Z Real Matrix The z data set for a 3D surface or parametric
surface plot.

colorMap Real Matrix Set of data defining the color map values to
use. Must have the same dimensions as the
3D z data. (Optional.)

Chapter 7 Function Reference — createPlot

HiQ Reference Manual 7-84 © National Instruments Corporation

Comments
You can use the output parameter plot as an input to the function addPlot to add the plot
to a graph.

When the x-axis data is not supplied in a 2D plot or the x-axis and y-axis data are not supplied
in a 3D plot, HiQ uses the positive integers.

For 3D plots, the z data set, or the color map if provided, is used to determine the color of the
plot. Use the colorMap.style property of the plot to define the color palette.

See Also
addPlot , changePlotData , removePlot

ZFct Function The z function for a 3D surface or parametric
surface plot.

z Real Vector The z data set for a 3D curve.

xFct Function The x function to evaluate for a 3D parametric
curve plot.

zFct Function The z function to evaluate for a 3D parametric
curve plot.

tParam Real Vector The parametric data for a 3D parametric curve.

X Real Matrix The x data set for a 3D parametric surface plot.

Y Real Matrix The y data set for a 3D parametric surface plot.

XFct Function The x function for a 3D parametric
surface plot.

YFct Function The y function for a 3D parametric
surface plot.

uParam Real Vector The u parametric data for a 3D parametric
surface.

vParam Real Vector The v parametric data for a 3D parametric
surface.

plot 2D or 3D Plot The handle to the newly created plot.

Name Type Description

Chapter 7 Function Reference — createPoly

© National Instruments Corporation 7-85 HiQ Reference Manual

createPoly

Purpose
Creates a polynomial.

Usage
Creates a polynomial with the given roots.

p = createPoly(pRoots)

Creates a polynomial with the given coefficients.
p = createPoly(coefs, order)

Creates an orthogonal polynomial of a specified degree.
p = createPoly(degree, type)

p = createPoly(degree, <gegenbauer>, a)

p = createPoly(degree, <aLaguerre>, a)

Creates the characteristic polynomial of a matrix.
p = createPoly(A)

Parameters

Name Type Description

pRoots Real or Complex
Vector

The roots of the polynomial.

coefs Real or Complex
Vector

The coefficients of the polynomial.

order HiQ Constant The order of the coefficients based on the
degree of the polynomial.

<ascending>
<descending>

degree Integer Scalar The degree of the polynomial.

type HiQ Constant The type of orthogonal polynomial to create.

<chebyshev1>
<chebyshev2>
<hermite>
<laguerre>
<legendre>

Chapter 7 Function Reference — createPoly

HiQ Reference Manual 7-86 © National Instruments Corporation

Comments
The usage createPoly(pRoots) where pRoots is an n-element vector containing the
desired polynomial roots creates a normalized polynomial of degree n.

A family of polynomials pi(x) are called orthogonal polynomials over the interval
if each polynomial in the family satisfies the following equations.

 if

The interval (a, b) and the weighting function w(x) vary depending on the family of
orthogonal polynomials.

Chebyshev orthogonal polynomials of the first kind, Tn (x), are defined by the integral

and follow the recurrence relationship

 where

a Real Scalar Additional parameter for polynomial type
<gegenbauer> and <aLaguerre> .

A Matrix The matrix used to create the characteristic
polynomial.

p Polynomial The resulting polynomial.

Name Type Description

a x b< <

w x()pn x()pm x() xd

a

b

∫ 0= n m≠

w x()pn x()pn x() xd

a

b

∫ hn 0≠=

1

1 x
2–

------------------Tn x()Tn x() xd

1–

1

∫
π
2
--- if n 0≠

π if n 0=

=

T0 x() 1=

T1 x() x=

Tn x() 2xTn 1– x() Tn 2– x()–= n 2 3 …, ,=

Chapter 7 Function Reference — createPoly

© National Instruments Corporation 7-87 HiQ Reference Manual

Chebyshev orthogonal polynomials of the second kind, Un (x), are defined by the integral

and follow the recurrence relationship

 where

Gegenbauer orthogonal polynomials (ultraspherical polynomials), , are defined by the
integral

and follow the recurrence relationship

 where for

1 x
2– Un x()Un x() xd

1–

1

∫ π
2
---=

U0 x() 1=

U1 x() 2x=

Un x() 2xUn 1– x() Un 2– x()–= n 2 3 …, ,=

Cn
a

x()

1 x
2–()

a 1
2
---–

Cn
a

x()Cn
a

x() xd

1–

1

∫
π21 2a– Γ n 2a+()
n! n a+()Γ2

a()
-- if a 0≠

2π
n2
------ if a 0=

=

C0
a x() 1=

C1
a

x() 2ax=

Cn
a x() 2 n a+()

n 1+
--------------------Cn 1–

a x() n 2a 1–+
n 1+

------------------------Cn 2–
a–= n 2 3 …, ,= a 0≠

Chapter 7 Function Reference — createPoly

HiQ Reference Manual 7-88 © National Instruments Corporation

Hermite orthogonal polynomials, Hn (x), are defined by the integral

and follow the recurrence relationship

 where

Laguerre orthogonal polynomials, Ln (x), are defined by the integral

and follow the recurrence relationship

 where

e
x2–

Hn x()Hn x() x π2
n
n!=d

∞–

∞

∫

H0 x() 1=

H1 x() 2x=

Hn x() 2xHn 1– x() 2 n 1–()Hn 2– x()–= n 2 3 …, ,=

e
x–
Ln x()Ln x() xd

0

∞

∫ 1=

L0 x() 1=

L1 x() x– 1+=

Ln x() 2n 1– x–
n

------------------------Ln 1– x() n 1–
n

------------Ln 2––= n 2 3 …, ,=

Chapter 7 Function Reference — createPoly

© National Instruments Corporation 7-89 HiQ Reference Manual

Associated Laguerre orthogonal polynomials, , are defined by the integral

and follow the recurrence relationship

 where

Legendre orthogonal polynomials, Pn (x), are defined by the integral

and follow the recurrence relationship

 where

See Also
evalPoly

Ln
a

x()

e
x–
x

a
Ln

a
x()Ln

a
x() xd

0

∞

∫ Γ a n 1+ +()
n!

------------------------------=

Ln
a

x() 1=

Ln
a

x() x– a 1+ +=

Ln
a

x() 2n a 1– x–+
n

---------------------------------Ln 1–
a

x() n a 1–+
n

---------------------Ln 2–
a

–= n 2 3 …, ,=

Pn x()Pn x() xd

1–

1

∫ 2
2n 1+
---------------=

P0 x() 1=

P1 x() x=

Pn x() 2n 1–
n

---------------xPn 1– x() n 1–
n

------------Pn 2––= n 2 3 …, ,=

Chapter 7 Function Reference — createVector

HiQ Reference Manual 7-90 © National Instruments Corporation

createVector

Purpose
Creates a variety of special vectors.

Usage
Creates a vector initialized with a specified value.

y = createVector(n, <fill>, a)

Creates a vector initialized with the sequence of whole numbers starting at 1.
y = createVector(n, <seq>)

Creates the specified basis vector.
y = createVector(n, <kronecker> , i)

y = createVector(n, <heaviside> , i)

Creates a vector initialized with random numbers of the given distribution.
y = createVector(n, <random>)

y = createVector(n, <random>, a, b, <uniform>)

y = createVector(n, <random>, xMean, xStddev, <normal>)

y = createVector(n, <random>, k, <exp>)

y = createVector(n, <random>, p, <bernoulli>)

Parameters

Name Type Description

n Integer Scalar The number of elements in the vector.

a Scalar The fill value used to initialize the elements of
the vector or the lower range of the uniform
distribution.

i Integer Scalar The basis index. (Optional. Default = 1)

b Real Scalar The upper range of the uniform distribution.

xMean Real Scalar The mean of the normal distribution.

xStddev Real Scalar The standard deviation of the normal
distribution.

k Real Scalar The reciprocal of the average of the
exponential distribution.

Chapter 7 Function Reference — createVector

© National Instruments Corporation 7-91 HiQ Reference Manual

Comments
The function createVector performs faster than HiQ-Script for creating a vector
containing constant, random, or sequence values.

The Kronecker and Heaviside vectors are used to form a basis in n-dimensional vector space.
The Kronecker vector is defined as

The Heaviside vector is defined as

This function returns a zero vector if the optional input parameter i is zero.

See Also
basis , createMatrix , fill , seq

p Real Scalar The probability of ones occurring in the
distribution.

y Vector The new vector.

Name Type Description

ak
1 if k i=

0 if k i≠

=

ak
1 if k i≤
0 if k i>

=

Chapter 7 Function Reference — createView

HiQ Reference Manual 7-92 © National Instruments Corporation

createView

Purpose
Creates a view of an object in a separate window.

Usage
createView(x, pause)

Parameters

Comments
If pause is false , the script continues to execute. If pause is true , the view has a continue
button and the script pauses execution until the continue button is pressed. The view closes
when the continue button is pressed.

See Also
wait

Name Type Description

x Object The object to be viewed.

pause HiQ Constant Specifies whether to pause the current script
while the view is still visible. (Optional.
Default = false)

true
false

Chapter 7 Function Reference — cross

© National Instruments Corporation 7-93 HiQ Reference Manual

cross

Purpose
Computes the cross product of two three-element vectors.

Usage
[z, theta] = cross(x, y)

Parameters

Comments
The cross product of two vectors is defined only for three-dimensional (three-element)
vectors.

See Also
dot

Name Type Description

x Real Vector The first input vector.

y Real Vector The second input vector.

z Real Vector The cross product vector of the inputs.

theta Real Scalar The angle between the two input vectors
(in radians.)

Chapter 7 Function Reference — csc

HiQ Reference Manual 7-94 © National Instruments Corporation

csc

Purpose
Computes the cosecant.

Usage
y = csc(x)

Parameters

Comments
The cosecant is defined for the real domain (), .

See Also
arccsc , csch , sec

Name Type Description

x Real or Complex
Scalar

The input angle in radians.

y Real or Complex
Scalar

The cosecant of the input.

∞– ∞, x nπ±≠

Chapter 7 Function Reference — csch

© National Instruments Corporation 7-95 HiQ Reference Manual

csch

Purpose
Computes the hyperbolic cosecant.

Usage
y = csch(x)

Parameters

Comments
The hyperbolic cosecant is defined for the real domain (), .

See Also
arccsch , csc , sech

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The hyperbolic cosecant of the input.

∞– ∞, x 0≠

Chapter 7 Function Reference — curl

HiQ Reference Manual 7-96 © National Instruments Corporation

curl

Purpose
Computes the curl of a three-dimensional vector field.

Usage
y = curl(fct, x0 , h, method)

Parameters

Comments
Given a vector field v defined in three-dimensional space

the curl of the vector field v is defined by the following equation.

If the step size is equal to zero, HiQ chooses an appropriate step size based on the precision
of your computer.

The forward, central, and extended central difference methods result in finite difference
approximations of order one, two, and four respectively.

Name Type Description

fct Function The input function.

x0 Real Scalar The point at which to calculate the curl.

h Real Scalar The step size to use. (Optional.)

method HiQ Constant The finite difference method to use. (Optional.
Default = <central>)

<extended>
<central>
<forward>

y Real Vector The curl of the function.

v v x y z, ,() vx x y z, ,()i vy x y z, ,()j vz x y z, ,()k+ +==

curl v ∇ v×
∂vz

∂y

∂vy

∂z
--------–

 i
∂vx

∂z

∂vz

∂x
-------–

 j
∂vy

∂x

∂vx

∂y
--------–

 k+ += =

Chapter 7 Function Reference — curl

© National Instruments Corporation 7-97 HiQ Reference Manual

Examples
Computing the local angular velocity in a moving fluid.
// Compute the local angular velocity at point P in a fluid

// moving with velocity field v.

// Define the velocity field.

v = {f:x:"x[1]*basis(3, <kronecker>, 2)"};

// Generate a computation point for the angular velocity.

point = createVector(3, <random>, -5, 5);

// Compute the angular velocity.

velocity = .5* curl (v, point);

See Also
div , gradient , laplacian

Chapter 7 Function Reference — date

HiQ Reference Manual 7-98 © National Instruments Corporation

date

Purpose
Returns the current date.

Usage
[today, year, month, day, dayOfWeek, dayOfYear] = date(format)

Parameters

Comments
This function creates a text object containing the current month, day, and year formatted in
either a short or long form. For example, the following script returns the short formatted text
11/19/1996 .

today = date();

The following script returns the long formatted text Tuesday, November 19, 1996 .

today = date(<long>);

See Also
time , timer , wait

Name Type Description

format HiQ Constant The date format. (Optional.
Default = <short>)

<short>
<long>

today Text The current date.

year Integer Scalar The current year.

month Integer Scalar The current month.

day Integer Scalar The current day.

dayOfWeek Integer Scalar The current day of the week.

dayOfYear Integer Scalar The current day of the year.

Chapter 7 Function Reference — dawson

© National Instruments Corporation 7-99 HiQ Reference Manual

dawson

Purpose
Computes the Dawson integral.

Usage
y = dawson(x)

Parameters

Comments
The Dawson’s integral function is defined as

Examples
Computing the error function of a purely imaginary value.
// Compute the error function of a purely imaginary value using

// the Dawson integral.

// Create the imaginary scalar.

z.i = random(-5, 5);

// Compute the exponential component to the formula.

erfz.i = 2*exp(z.i*z.i)/sqrt(<pi>);

// Factor in the Dawson component to get the result.

erfz.i = erfz.i* dawson (z.i);

See Also
erf , erfc , fCosI , fSinI

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the Dawson integral.

e
x2–

e
t2

td

0

x

∫

Chapter 7 Function Reference — degree

HiQ Reference Manual 7-100 © National Instruments Corporation

degree

Purpose
Computes the effective degree of a polynomial.

Usage
n = degree(p, tolr)

Parameters

See Also
inv , compose , pow

Name Type Description

p Polynomial The input polynomial.

tolr Real Scalar The tolerance to use. (Optional.)

n Integer Scalar The effective degree of the polynomial.

Chapter 7 Function Reference — deleteFile

© National Instruments Corporation 7-101 HiQ Reference Manual

deleteFile

Purpose
Deletes a file from hard disk.

Usage
deleteFile(fileName)

Parameters

Comments
You can include the path name to fully specify the location. If you do not specify the path
name then HiQ uses the current directory.

See Also
close , open , renameFile

Name Type Description

fileName Text The name of the file to delete.

Chapter 7 Function Reference — derivative

HiQ Reference Manual 7-102 © National Instruments Corporation

derivative

Purpose
Computes the derivative of a function or polynomial.

Usage
Computes the n-th derivative of a function.

y = derivative(fct, x , n, h)

Computes the first derivative of a function using the specified difference method.
y = derivative(fct, x, 1, h, method)

Creates the n-th derivative polynomial object of another polynomial object.
yPoly = derivative(xPoly , n)

Computes the derivative of a signal.
w = derivative(v, h, vInit, vFinal)

Parameters

Name Type Description

fct Function or
Polynomial

The input function.

x Scalar The point at which to calculate the derivative.

n Integer Scalar The order of the derivative. (Optional.
Default = 1)

h Scalar The step size to use. (Optional.)

method HiQ Constant The finite difference method to use. (Optional.
Default = <central >)

<extended>
<central>
<forward>

xPoly Polynomial The input polynomial.

v Real Vector An n-element vector representing a signal or
waveform.

vInit Real Scalar The value represented by v [0].

vFinal Real Scalar The value represented by v [n+1].

Chapter 7 Function Reference — derivative

© National Instruments Corporation 7-103 HiQ Reference Manual

Comments
HiQ uses different methods for computing the derivative depending on how you use the
function.

y = derivative(fct, x, n);

HiQ computes the nth derivative as accurately as possible using an extrapolation to a limit.
This method uses several different step sizes to calculate intermediate derivatives and relies
on the convergence of these derivatives to the final answer.

y = derivative(fct, x, n, stepsize);

HiQ computes the nth derivative using the central difference method. If the step size is equal
to zero, HiQ chooses an appropriate step size based on the precision of your computer.

y = derivative(fct, x, 1, stepsize, method);

HiQ computes the first derivative using the specified difference method. If the step size is
equal to zero, HiQ chooses an appropriate step size based on the precision of your computer.

The forward, central, and extended central difference methods result in finite difference
approximations of order one, two, and four respectively.

Examples
Illustrating the second derivative relationships of the Airy function.
// Show the second derivative relationships for the airy function,

// i.e., d2f/dx2 = x*F where F = Ai(x) or Bi(x).

// Grab a random evaluation point.

x = random(-5, 5);

// Compute the airy functions at the evaluation point.

[ai, bi] = airy(x);

y Scalar The numeric derivative of the function.

yPoly Polynomial The polynomial object representing the
derivative of the input polynomial.

w Real Vector An n-element vector representing the
derivative of the input signal.

Name Type Description

Chapter 7 Function Reference — derivative

HiQ Reference Manual 7-104 © National Instruments Corporation

// Generate an individual function to compute the second derivatives.

Ai = {f:x:"airy(x)"};

Bi = {f:x:"[,bix] = airy(x); return bix;"};

// Compute the second derivative for each at the evaluation point.

d2Ai = derivative (Ai, x, 2);

d2Bi = derivative (Bi, x, 2);

// Compute the difference in the two computations.

diffAi = d2Ai - ai*x;

diffBi = d2Bi - bi*x;

// Show the results.

message("Difference in Ai(x) = " + totext(diffAi));

message("Difference in Bi(x) = " + totext(diffBi));

See Also
gradient , hessian , integrate , jacobian , laplacian , partial

Chapter 7 Function Reference — det

© National Instruments Corporation 7-105 HiQ Reference Manual

det

Purpose
Computes the determinant of a matrix.

Usage
y = det(A)

Parameters

Comments
HiQ uses various algorithms to compute the determinant depending on the structural
properties of A. Computing the determinant of lower or upper triangular matrices is faster
than computing the determinant of a matrix having rectangular structure.

Although the determinant of a matrix is the most important invariant of a square matrix, you
should not use it as a measure of matrix singularity or matrix conditioning. For example, a
well-conditioned matrix may have a small determinant. You should use functions rank and
cond to determine these properties.

See Also
rank , trace

Name Type Description

A Real or Complex
Matrix

A square matrix.

y Real or Complex
Scalar

The determinant of the matrix A.

Chapter 7 Function Reference — diag

HiQ Reference Manual 7-106 © National Instruments Corporation

diag

Purpose
Creates a diagonal matrix or extracts diagonal elements from a matrix.

Usage
Creates a matrix containing the specified diagonal elements.

D = diag(a , p)

Returns the specified diagonal of a matrix.
d = diag(A , p)

Sets the values of the specified diagonal of a matrix.
D = diag(A, a , p)

Parameters

Comments
For the cases where the optional parameter p is specified, a positive p indicates a
superdiagonal and a negative p indicates a sub-diagonal. For example, p=–1 indicates the
diagonal immediately below the main diagonal.

See Also
createMatrix , createVector

Name Type Description

a Vector The vector of values to assign to the diagonal.

p Integer Scalar The desired diagonal. (Optional.
Default = 0 (main diagonal))

A Matrix The matrix from which to extract the diagonal
or the matrix containing the diagonal to set.

D Matrix Diagonal matrix containing the desired values.

d Vector Contains the diagonal values of the input
matrix.

Chapter 7 Function Reference — digamma

© National Instruments Corporation 7-107 HiQ Reference Manual

digamma

Purpose
Computes the digamma (psi) function.

Usage
y = digamma(x)

Parameters

Comments
The digamma function (psi function) is defined by the following equation.

Examples
Computing the Bateman's G function and the derivative of the gamma
function.
// Use the digamma function to compute the Bateman's G function

// and the derivative of the gamma function.

// Choose the evaluation point for the Bateman's G function.

x = random(-5, 5);

// Define the G function in terms of digamma ().

G = {f:x:" digamma(.5*(x+1.0)) - digamma(.5*x)"};

// Compute the Bateman's G function at the evaluation point.

y = G(x);

// Compute the derivative of the gamma function at x.

dGamma = gamma(x)* digamma (x);

See Also
beta , gamma

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the digamma function.

ψ x() d Γ x()()ln
dx

--------------------------- 1
Γ x()
-----------dΓ x()

dx
--------------= =

Chapter 7 Function Reference — diln

HiQ Reference Manual 7-108 © National Instruments Corporation

diln

Purpose
Computes the dilogarithm function (Spence’s Integral).

Usage
y = diln(x)

Parameters

Comments
The dilogarithm (Spence’s integral) function is defined by the following equation.

See Also
ln

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the dilogarithm function.

diln x() t()ln
t 1–
------------ td

1

x

∫–=

Chapter 7 Function Reference — dim

© National Instruments Corporation 7-109 HiQ Reference Manual

dim

Purpose
Returns the dimensions of a vector or matrix.

Usage
Returns the size of a vector.

m = dim(a)

Returns the row, column, and lower and upper bandwidth dimensions of a matrix.
[m, n, mb, nb] = dim(A)

Parameters

Comments
If a is a vector, the column dimension, upper bandwidth, and lower bandwidth are returned
as 0.

The function dim returns the lower and upper bandwidths of the matrix based on the structural
properties of the matrix, not the values of the elements. To compute the lower and upper
bandwidths of the matrix based on the values of the elements, use the function bandwidth .

Examples
Determining the most efficient matrix storage type.
// Given a real matrix A storing all elements, convert the

// matrix to the storage type that is most efficient.

project A;

Name Type Description

a Vector The input vector.

A Matrix The input matrix.

m Integer Scalar The row dimension of the matrix or size of the
vector.

n Integer Scalar The column dimension of the matrix.

mb Integer Scalar The lower bandwidth dimension of the matrix.

nb Integer Scalar The upper bandwidth dimension of the matrix.

Chapter 7 Function Reference — dim

HiQ Reference Manual 7-110 © National Instruments Corporation

// Compute the current bandwidths of the adjusted matrix.

// The second input treats elements within an epsilon

// neighborhood of zero as zero.

[mb, nb] = bandwidth(A, <epsilon>);

// To compute the number of stored elements in the matrix,

// get the matrix dimensions.

[m, n] = dim (A);

// Select the storage type that would be most efficient.

if (m == n && (mb == 0 || nb == 0)) then

// The most efficient matrix type could be triangular...

if (.5*(m+1) < mb+nb+1) then

if (mb == 0) then

matrixType = <upperTri>;

else

matrixType = <lowerTri>;

end if;

else if (mb+nb+1 < m) then

matrixType = <band>;

else

matrixType = <rect>;

end if;

else if (mb+nb+1 < m) then

matrixType = <band>;

else

matrixType = <rect>;

end if;

// Now that the optimal storage type is known, convert

// the matrix.

if matrixType == <band> then

A = convert(A, matrixType, mb, nb);

else

A = convert(A, matrixType);

end if;

See Also
bandwidth , createMatrix , createVector

Chapter 7 Function Reference — dist

© National Instruments Corporation 7-111 HiQ Reference Manual

dist

Purpose
Computes the distance between two vectors or matrices.

Usage
Computes the distance between two vectors.

x = dist(a, b , vType)

Computes the distance between two vectors using the p-norm.
x = dist(a, b, <Lp>, p)

Computes the distance between two vectors using the weighted Euclidean norm.
x = dist(a, b, <Lw>, w)

Computes the distance between two matrices.
x = dist(A, B , mType)

Parameters

Name Type Description

a Real or Complex
Vector

The first input vector.

b Real or Complex
Vector

The second input.

vType HiQ Constant Type of vector norm to use. (Optional.
Default = <L2>)

<Lp>
<L1>

<Lw>
<L2sq>
<L2>

p Integer Scalar Parameter for vType <Lp>.

w Real Vector Weighting vector for vType <Lw>.

A Real or Complex
Matrix

The first input matrix.

B Real or Complex
Matrix

The second input matrix

Chapter 7 Function Reference — dist

HiQ Reference Manual 7-112 © National Instruments Corporation

Comments
In a Euclidean vector space, distance between two points (vectors) in the space is often
defined as the Euclidean norm of the difference between the two points (vectors).

You can extend this concept by choosing different types of norms or different objects for the
elements of the space. For example, an element in an vector space is an matrix
and you can define the notion of distance as the Frobenius norm of the difference between two
matrices. Refer to the description of the function norm for more information.

See Also
cond , norm

mType HiQ Constant Type of matrix norm to use. (Optional.
Default = <L2>)

<L1>

<L2sq>
<L2>
<frob>

x Real Scalar The distance between the two inputs.

Name Type Description

dist a b,() a b– 2=

m n× m n×

Chapter 7 Function Reference — div

© National Instruments Corporation 7-113 HiQ Reference Manual

div

Purpose
Computes the divergence of a three-dimensional vector field.

Usage
y = div(fct, x0 , h, method)

Parameters

Comments
Given a vector field v defined in three-dimensional space

the divergence of the vector field v is defined by the following equation.

If the step size is equal to zero, HiQ chooses an appropriate step size based on the precision
of your computer. The forward, central, and extended central difference methods result in
finite difference approximations of order one, two, and four respectively.

See Also
curl , gradient , laplacian

Name Type Description

fct Function The input function representing the
three-dimensional vector field.

x0 Real Vector The point at which to calculate the divergence.

h Real Scalar The step size to use. (Optional.)

method HiQ Constant The finite difference method to use. (Optional.
Default = <central>)

<central>
<forward>
<extended>

y Real Scalar The divergence of the function.

v v x y z, ,() vx x y z, ,() i vy x y z, ,()j vz x y z, ,()k+ +==

div v ∇ v⋅
∂vx

∂x

∂vy

∂y

∂vz

∂z
-------+ += =

Chapter 7 Function Reference — divide

HiQ Reference Manual 7-114 © National Instruments Corporation

divide

Purpose
Computes the ratio of two polynomials.

Usage
[quotient, remainder] = divide(p, q)

Parameters

Comments
This function returns the remainder while the division operator does not.

See Also
compose , inv

Name Type Description

p Polynomial The polynomial numerator.

q Polynomial The polynomial denominator.

quotient Polynomial The resulting quotient.

remainder Polynomial The remainder.

Chapter 7 Function Reference — dot

© National Instruments Corporation 7-115 HiQ Reference Manual

dot

Purpose
Computes the dot product of two vectors.

Usage
Computes dot product of two vectors.

z = dot(x, y)

Computes the weighted dot product of two vectors.
z = dot(x, A, y)

Parameters

Comments
The dot product (scalar product or inner product) of two n-element vectors a and b is defined
by the following equation.

See Also
cross

Name Type Description

x Real or Complex
Vector

An m-element input vector.

y Real or Complex
Vector

An n-element input vector.

A Real or Complex
Matrix

An mxn weighting matrix.

z Real Scalar The dot product of the two input vectors.

a b⋅ aibi

i 1=

n

∑=

Chapter 7 Function Reference — eigen

HiQ Reference Manual 7-116 © National Instruments Corporation

eigen

Purpose
Computes the eigenvalues and eigenvectors of a matrix.

Usage
Computes the eigenvalues and eigenvectors of a matrix.

[e, V] = eigen(A , aType)

Computes the generalized eigenvalues and eigenvectors of a matrix.
[e, V] = eigen(A, B)

Parameters

Comments
A scalar is an eigenvalue of the matrix A if there exists a nonzero vector x such that,

The nonzero vector x is called an eigenvector of A and is associated with the eigenvalue .
The set of n eigenvalues is called the spectrum of A. If A is a real matrix, complex eigenvalues
always occur in complex conjugate pairs and the eigenvectors are complex. If A is a real
symmetric matrix, the eigenvalues and eigenvectors are real. If A is a complex Hermitian
matrix, the eigenvalues are real and the eigenvectors are real or complex. The columns of the
return matrix X contain the n normalized eigenvectors corresponding to the n eigenvalues.

Name Type Description

A Real or Complex
Matrix

The square nxn input matrix.

aType HiQ Constant Describes the structural properties of the input
matrix. (Optional.)

<hermitian>
<symmetric>

B Real Matrix The square nxn generalized input matrix.

e Complex Vector A k-element vector containing the eigenvalues
of A in descending order.

V Complex Matrix An nxk matrix whose columns contain the
eigenvectors of A.

λ n n×

Ax λx=

λ

Chapter 7 Function Reference — eigen

© National Instruments Corporation 7-117 HiQ Reference Manual

If the eigenvalues are distinct, the matrix of eigenvectors X can be used to perform the
similarity transformation

where is a diagonal matrix containing the eigenvalues along the main diagonal. If some
eigenvalues are repeated but the eigenvectors are distinct, the above similarity transformation
is still valid.

If some of the eigenvalues and eigenvectors are repeated, the matrix of eigenvectors X can be
used to perform the similarity transformation

where J is a block-diagonal matrix in the Jordan form

Ji are Jordan blocks in the form

and p is the number of distinct eigenvalues.

HiQ uses a QR algorithm with balancing, Hessenberg reduction, and implicit double shifting
to solve the eigenvalue problem. The algorithm is iterative and may generate an error if
convergence is poor.

If you specify a value of <symmetric> or <hermitian> for the parameter aType , HiQ uses
the lower triangular portion of the matrix to compute the eigenvalues.

X 1– AX Λ=

Λ

X 1– AX J=

J1 0 … 0

0 J2 ...
... . . . 0

0 … 0 Jp

λj 1 … 0

0 λ j
.

... . . . 1

0 … 0 λj

Chapter 7 Function Reference — eigen

HiQ Reference Manual 7-118 © National Instruments Corporation

The generalized eigenvalue problem is defined as

where B is an matrix. The matrix A has n eigenvalue and eigenvector pairs only if B
has full rank. If B is rank deficient, the actual number of eigenvalues computed might be less
than n. HiQ uses a QZ algorithm to solve the generalized eigenvalue problem.

This function executes significantly faster when you request only the eigenvalues as in the
following script.

z = eigen(A);

See Also
eigenDom , eigenSel , SVD

Ax λBx=

n n×

Chapter 7 Function Reference — eigenDom

© National Instruments Corporation 7-119 HiQ Reference Manual

eigenDom

Purpose
Computes the dominant eigenvalue and eigenvector of a matrix.

Usage
[e, x, nIter] = eigenDom(A , tolr, iterMax, aType)

Parameters

Comments
An eigenvalue is the dominant (or principle) eigenvalue of the matrix A if

where is an eigenvalue of A. This function uses the iterative power method for calculating
the dominant eigenvalue and returns after the maximum number of iterations has occurred or
the specified tolerance has been achieved. The tolerance is a measure of how the eigenvalue
solution is changing between each iteration, not a measure of closeness to the actual value of
the dominant eigenvalue. If HiQ generates an error message about a convergence problem,
the tolerance and maximum iteration values might be too restrictive, the matrix A might lack
a dominant eigenvalue, or the dominant eigenvalue might be too close to the other
eigenvalues. The output parameter nIter gives an indication of the rate of convergence.

Name Type Description

A Real or Complex
Matrix

The square nxn input matrix.

tolr Real Scalar The eigenvalue tolerance. (Optional.)

iterMax Integer Scalar The maximum number of iterations to perform.
(Optional. Default = 32)

aType HiQ Constant Describes the structural properties of the input
matrix. (Optional.)

<hermitian>
<symmetric>

e Real Scalar The dominant eigenvalue.

x Real or Complex
Vector

The eigenvector associated with the dominant
eigenvalue.

nIter Integer Scalar The number of iterations performed.

λd n n×

λd λ i i,> 1 n i d≠;,=

λ i

Chapter 7 Function Reference — eigenDom

HiQ Reference Manual 7-120 © National Instruments Corporation

Calling this function several times might produce different results because the algorithm uses
random numbers. You can use the function seed to control the random sequence and ensure
repeatable results.

If A is real symmetric or complex Hermitian, HiQ uses the symmetric power method. If A is
real, the dominant eigenvalue and eigenvector are real. The symmetric power method uses
Rayleigh quotients

to estimate the dominant eigenvalue. Although each iteration requires more memory than
the power method, the rate of convergence is twice as fast. This method also works for
non-symmetric matrices, but the rate of convergence is the same as the power method.

See Also
eigen , eigenSel

λ i
Avi vi,()

vi

--------------------=

Chapter 7 Function Reference — eigenSel

© National Instruments Corporation 7-121 HiQ Reference Manual

eigenSel

Purpose
Computes the eigenvalue closest to a specified value and its corresponding eigenvector.

Usage
Computes the eigenvalue and associated eigenvector closest to a specified value.

[e, v, nIter] = eigenSel(A, e0 , tolr, iterMax, nLUD)

Computes the generalized eigenvalue and associated eigenvector closest to a specified value.
[e, v, nIter] = eigenSel(A, B, e0 , tolr, iterMax, nLUD)

Parameters

Comments
This function uses the inverse iteration method to find the real eigenvalue in the neighborhood
of the initial guess and returns after the maximum number of iterations has occurred or the
specified tolerance has been achieved. Each time HiQ updates the eigenvalue guess, the
algorithm performs an LU decomposition to obtain the corresponding eigenvector. The
algorithm might converge more quickly if the LUD decomposition is not performed at each
iteration. You control how often the LUD decomposition occurs with the input parameter
nLUD. An update rate of eight k=8 should provide good performance and quicker

Name Type Description

A Real Matrix A square nxn input matrix.

e0 Real Scalar The initial eigenvalue guess.

tolr Real Scalar The solution tolerance. (Optional.
Default = .01)

iterMax Integer Scalar The maximum number of iterations.
(Optional. Default = 128)

nLUD Integer Scalar The number of iterations between recalculation
of the LU decomposition. (Optional.
Default =8)

B Real Matrix A square nxn generalized input matrix.

e Real Scalar The computed eigenvalue.

v Real Vector The computed eigenvector.

nIter Integer Scalar The number of iterations performed.

Chapter 7 Function Reference — eigenSel

HiQ Reference Manual 7-122 © National Instruments Corporation

convergence. The results could be different on subsequent runs because the algorithm
depends on a random number generator. You can use the function seed to control the random
sequence and ensure repeatable results.

Refer to the function eigen for more information about the eigenvalue and generalized
eigenvalue problem.

See Also
eigen , eigenDom

Chapter 7 Function Reference — elliptic1

© National Instruments Corporation 7-123 HiQ Reference Manual

elliptic1

Purpose
Computes the elliptic integral of the first kind.

Usage
y = elliptic1(k , a)

Parameters

Comments
The elliptic integral of the first kind is defined by the following equation.

The parameter k is called the modulus and the upper limit of the integral a is called the
amplitude. The complete elliptic integral of the first kind is defined by the previous equation
when the amplitude .

See Also
elliptic2 , ellipticJ

Name Type Description

k Real Scalar The modulus argument.

a Real Scalar The amplitude of the function (the upper limit
of the integral). (Optional. Default = <pi> /2)

y Real Scalar The value of the elliptic integral of the
first kind.

F k a,() 1

1 k sin2θ–
------------------------------ θd

0

a

∫=

a π 2⁄=

Chapter 7 Function Reference — elliptic2

HiQ Reference Manual 7-124 © National Instruments Corporation

elliptic2

Purpose
Computes the elliptic integral of the second kind.

Usage
y = elliptic2(k , a)

Parameters

Comments
The elliptic integral of the second kind is defined by the following equation.

The parameter k is called the modulus and the upper limit of the integral a is called the
amplitude. The complete elliptic integral of the second kind is defined by the previous
equation when the amplitude .

See Also
elliptic1 , ellipticJ

Name Type Description

k Real Scalar The modulus argument.

a Real Scalar The amplitude of the function (the upper limit
of the integral). (Optional. Default = <pi> /2)

y Real Scalar The value of the incomplete elliptic integral of
the second kind.

F k a,() 1 k sin2θ– θd

0

a

∫=

a π 2⁄=

Chapter 7 Function Reference — ellipticJ

© National Instruments Corporation 7-125 HiQ Reference Manual

ellipticJ

Purpose
Computes the Jacobi elliptic functions.

Usage
[cn, dn, sn] = ellipticJ(x, k)

Parameters

Comments
The three Jacobi elliptic functions are defined by the following equations.

See Also
elliptic1 , elliptic2

Name Type Description

x Real Scalar The input argument.

k Real Scalar The integrand parameter.

cn Real Scalar The value of the Jacobi elliptic function cn .

dn Real Scalar The value of the Jacobi elliptic function dn .

sn Real Scalar The value of the Jacobi elliptic function sn .

cn x k,() φ()cos=

sn x k,() φ()sin=

dn x k,() 1 k sin2φ–=

 where x 1

1 k sin2θ–
------------------------------ θd

0

φ

∫=

Chapter 7 Function Reference — erf

HiQ Reference Manual 7-126 © National Instruments Corporation

erf

Purpose
Computes the error function.

Usage
y = erf(x)

Parameters

Comments
The error function is defined by the following equation.

See Also
dawson , erfc , fCosI , fSinI

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the error function.

erf x() 2

π
------- e

t2–
td

0

x

∫=

Chapter 7 Function Reference — erfc

© National Instruments Corporation 7-127 HiQ Reference Manual

erfc

Purpose
Computes the complementary error function.

Usage
y = erfc(x)

Parameters

Comments
The complement error function is defined by the following equation.

See Also
dawson , erf , fCosI , fSinI

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the complementary error function.

erfc x() 1 erf x() 2

π
------- e

t2–
td

x

∞

∫=–=

Chapter 7 Function Reference — error

HiQ Reference Manual 7-128 © National Instruments Corporation

error

Purpose
Displays an error dialog box and terminates a HiQ-Script.

Usage
error(text)

Parameters

Comments
The error function displays a run-time error dialog box containing the script name and line
number where the error function was called, and the input text. The script terminates after
the user clicks on the OK button.

See Also
message , warning

Name Type Description

text Text Error message to display in the dialog box.

Chapter 7 Function Reference — eval

© National Instruments Corporation 7-129 HiQ Reference Manual

eval

Purpose
Evaluates a polynomial or single-valued function at the given input value.

Usage
Evaluate a polynomial at the given input value.

Z = eval(poly, X)

Evaluate a single-valued function at the given input values on an element-by-element basis.
Z = eval(fct, Y1, Y2, Y3)

Evaluate a single-valued function at the given matrix object.
Z = eval(fctS, Y, <object>)

Parameters

Name Type Description

poly Polynomial The polynomial to evaluate.

X Scalar or Matrix The number or matrix at which to evaluate
the polynomial.

fct Function The function to evaluate.

Y1 Vector or Matrix The values of the first parameter at which
to evaluate the function.

Y2 Vector or Matrix The values of the second parameter at which
to evaluate the function.

Y3 Vector or Matrix The values of the third parameter at which
to evaluate the function.

fctS Function The single-valued function used to evaluate a
matrix object.

Y Matrix The matrix object at which to compute the
single-valued function.

Z Scalar, Vector,
or Matrix

The value of the polynomial or function.

Chapter 7 Function Reference — eval

HiQ Reference Manual 7-130 © National Instruments Corporation

Comments
For built-in functions or user-defined functions, eval computes the element-by-element
result for any combinations of up to three function parameters. For example, the following
script computes the first order Bessel function of the first kind at several different arguments.

x = {v:1.1, 1.5, 1.9, 2.8, 3.7};

a = {v:1, 1, 1, 1, 1};

y = eval(besselJ, x, a);

The evaluation of a single-valued function at a matrix object is performed based on the
following formula.

[D, V] = eigen(Y);

Z = V*diag(eval(fct,D))*V^-1;

See Also
evalPoly

Chapter 7 Function Reference — evalPoly

© National Instruments Corporation 7-131 HiQ Reference Manual

evalPoly

Purpose
Evaluates a polynomial.

Usage
Evaluates a polynomial object at the desired value.

y = evalPoly(p, x)

Evaluates a polynomial of a specific type at a given point.
y = evalPoly(x, degree, type)

y = evalPoly(x, degree, <aLaguerre>, m)

y = evalPoly(x, degree, <jacobi>, r1, r2)

Parameters

Name Type Description

p Polynomial The input polynomial.

x Scalar or Matrix The input value.

degree Integer Scalar The order of the polynomial.

type HiQ Constant The orthogonal polynomial type.

<chebyshev1>
<chebyshev2>
<hermite>
<laguerre>
<legendre>

m Real Scalar Additional parameter for associated Laguerre
<aLaguerre> orthogonal polynomial type.

r1 Real Scalar Additional parameter for the Jacobi <jacobi>
orthogonal polynomial type.

r2 Real Scalar Additional parameter for the Jacobi <jacobi>
orthogonal polynomial type.

y Scalar, Vector, or
Matrix

The output values.

Chapter 7 Function Reference — evalPoly

HiQ Reference Manual 7-132 © National Instruments Corporation

Comments
Polynomial evaluation using matrices is performed using linear algebra, not on an
element-by-element basis.

This function evaluates orthogonal polynomials numerically without creating a polynomial
object. Only real scalar objects are valid.

A family of polynomials pi(x) are called orthogonal polynomials over the interval
if each polynomial in the family satisfies the following equations.

 if

The interval, (a, b), and the weighting function, w(x), vary depending on the family of
orthogonal polynomials.

Chebyshev orthogonal polynomials of the first kind, Tn (x), are defined by the integral

and follow the recurrence relationship

 where

a x b< <

w x()pn x()pm x() xd

a

b

∫ 0= n m≠

w x()pn x()pn x() xd

a

b

∫ hn 0≠=

1

1 x
2–

------------------Tn x()Tn x() xd

1–

1

∫
π
2
--- if n 0≠

π if n 0=

=

T0 x() 1=

T1 x() x=

Tn x() 2xTn 1– x() Tn 2– x()–= n 2 3 …, ,=

Chapter 7 Function Reference — evalPoly

© National Instruments Corporation 7-133 HiQ Reference Manual

Chebyshev orthogonal polynomials of the second kind, Un (x), are defined by the integral

and follow the recurrence relationship

 where

Jacobi orthogonal polynomials (hypergeometric polynomials), , are defined by the
integral

and follow the recurrence relationship

 where

1 x
2– Un x()Un x() xd

1–

1

∫ π
2
---=

U0 x() 1=

U1 x() 2x=

Un x() 2xUn 1– x() Un 2– x()–= n 2 3 …, ,=

Pn
µ v,

x()

1 x–()µ 1 x+()v
Pn

µ v,
x()Pn

µ v,
x() xd

1–

1

∫ 2µ v 1+ +

2n µ v 1+ + +
----------------------------------Γ n µ 1+ +()Γ n v 1+ +()

n!Γ n µ v 1+ + +()
---=

P0
µ v,

x() 1=

P1
µ v,

x() µ v 2+ +()
2

--------------------------x v µ–
2

------------+=

Pn
µ v,

x() 2n µ v 1–+ +() 2n µ v 2–+ +() 2n µ v+ +()x µ2– v
2+[]

2n n µ v+ +() 2n µ v 2–+ +()
--Pn 1–

µ v,
x() –=

n v 1–+() n µ 1–+() 2n µ v+ +()
n n µ v+ +() 2n µ v 2–+ +()

---Pn 2–
µ v,

x() n 2 3 …, ,=

Chapter 7 Function Reference — evalPoly

HiQ Reference Manual 7-134 © National Instruments Corporation

Hermite orthogonal polynomials, Hn (x), are defined by the integral

and follow the recurrence relationship

 where

Laguerre orthogonal polynomials, Ln (x), are defined by the integral

and follow the recurrence relationship

 where

e
x2–

Hn x()Hn x() xd

∞–

∞

∫ π2
n
n!=

H0 x() 1=

H1 x() x=

Hn x() 2xHn 1– x() 2nHn 2– x()–= n 2 3 …, ,=

e
x–
Ln x()Ln x() x 1=d

0

∞

∫

L0 x() 1=

L1 x() x– 1+=

Ln x() 2n 1– x–
n

------------------------Ln 1– x() n 1–
n

------------Ln 2––= n 2 3 …, ,=

Chapter 7 Function Reference — evalPoly

© National Instruments Corporation 7-135 HiQ Reference Manual

Associated Laguerre orthogonal polynomials, , are defined by the integral

and follow the recurrence relationship

 where

Legendre orthogonal polynomials, Pn (x), are defined by the integral

and follow the recurrence relationship

 where

See Also
createPoly

Ln
a

x()

e
x–
x

a
Ln

a
x()Ln

a
x() xd

0

∞

∫ Γ a n 1+ +()
n!

------------------------------=

Ln
a

x() 1=

Ln
a

x() x– a 1+ +=

Ln
a

x() 2n a 1– x–+
n

---------------------------------Ln 1–
a

x() n a 1–+
n

---------------------Ln 2–
a

–= n 2 3 …, ,=

Pn x()Pn x() xd

1–

1

∫ 2
2n 1+
---------------=

P0 x() 1=

P1 x() x– 1+=

Pn x() 2n 1–
n

---------------Pn 1– x() n 1–
n

------------Pn 2––= n 2 3 …, ,=

Chapter 7 Function Reference — exp

HiQ Reference Manual 7-136 © National Instruments Corporation

exp

Purpose
Computes the exponential function.

Usage
y = exp(x)

Parameters

Comments
The exponential function is defined by the following equation.

See Also
ln , log

Name Type Description

x Real or Complex
Scalar or Matrix

The input argument.

y Real or Complex
Scalar or Matrix

The exponential of the input.

x()exp e
x

=

Chapter 7 Function Reference — expI

© National Instruments Corporation 7-137 HiQ Reference Manual

expI

Purpose
Computes the exponential integral function.

Usage
y = expI(x, n)

Parameters

Comments
The exponential integral function is defined by the following equation.

See Also
cosI , sinI

Name Type Description

x Real Scalar The input argument.

n Integer Scalar The exponent parameter.

y Real Scalar The value of the exponential integral function.

E x n,() t n– e xt– td

1

∞

∫=

Chapter 7 Function Reference — export

HiQ Reference Manual 7-138 © National Instruments Corporation

export

Purpose
Exports data to a file.

Usage
export(fid, object , format, progressFct)

Parameters

Comments
HiQ uses the parameter format to convert data from an internal source object to an external
target object. For the export function, the source object is a HiQ object and the target object
is a file. HiQ provides predefined constants for the most commonly used data format strings.
If you do not provide the parameter format , HiQ exports the data as numeric text.

A format string is composed of three strings describing the external (target) data, the format
of the data, and the internal (source) object. These strings are separated by colons (:) as
follows.

"[ExternalDescr]:[FormatDescr]:[InternalDescr]"

Each string is composed of identifiers preceded by a percent sign (%). These strings and their
identifiers are described in detail below for the export function.

External Description
The external description string describes how the data is to be stored in the target file. HiQ
supports both big endian and little endian byte ordering. The valid identifiers for the external
description string are defined in the following table.

Name Type Description

fid Integer Scalar The file ID of the target file.

object Object The numeric object to write to the file.

format Text Specifies how to write the object to the file.
(Optional.)

progressFct Function A user function that monitors the progress of
the export. (Optional.)

Chapter 7 Function Reference — export

© National Instruments Corporation 7-139 HiQ Reference Manual

Format Description
The format description string describes how HiQ writes the numeric data to the file. For
example, you can specify whether the numeric data is text or binary, whether the data is
integer, real, or complex, or the width and precision of a text numeric field. The export wizard
(Notebook»Export Data...) is a convenient place to learn how the format description string
works. In expert mode, you can enter and modify a format string and immediately view the
results in the Preview window. The valid identifiers for the format description string are
defined in the following table.

Source Identifier Description

%littleendian

%intel

Bytes are stored in the file with the least
significant byte first. Intel CPU-based computers
use little endian byte ordering. (Default.)

%bigendian

%motorola

Bytes are stored in the file with the most
significant byte first. Motorola CPU-based
computers use big endian byte ordering.

%Excel

%Excel[sheet]

Source file is an Excel file. In the second form the
name of the sheet to be imported is specified.
If omitted the first sheet in the file is imported.

%range[A1style]

%range[HiQStyle]

For Excel files, indicates the desired cell range.
If omitted all cells with data are imported. The
range can be the Excel A1 style (for example,
%range[A1:C3]) or the HiQ-Script subscript
range style (for example, %range[1:3,1:3]).
The HiQ-Script range works exactly as in script
except that if the upper range is omitted it is
assumed to be *. In other words %range[1,1] is
the same as %range[1:*,1:*] .

Format Identifier Description

%delimiters [list] Delimiter identifier specifying the characters that
separate numeric values. (Optional.)

%count type [modifiers] Numeric identifier describing the repeat count and
format type for integer and real numeric values.
(Optional.)

%count cType [type [modifiers]] Numeric identifier describing the repeat count and
format type for complex numeric values.
(Optional.)

Chapter 7 Function Reference — export

HiQ Reference Manual 7-140 © National Instruments Corporation

A format description string can have multiple numeric format identifiers but only one
delimiter format identifier. The components of a format identifier string are defined in the
following table.

Parameter Description

list A string of characters that delimit the numeric values in a file. If list
is empty, HiQ uses the tab character. For special characters, use the
following.

\t (tab)
\] (right square bracket)
\[(left square bracket)
\\ (backslash)

count Indicates the number of times to apply the format identifier. A value of
zero repeats the format identifier for the entire row of a matrix. A zero
value is invalid with binary forms. (Optional. Default =1.)

type Indicates whether the data is text numeric or binary numeric and integer
or real. (Optional. Default = g)

f Text Decimal real. For example, 123.456 .

e Text Scientific real. For example, 1.23456e02 .

g Text General real. For example, 1.23456e02 .

ee Text Engineering real. For example, 0.123456e03 .

ge Text General engineering real. For example, 0.123456e03 .

i Text Decimal integer. For example, 123 .

d Text Decimal integer. For example, 123 .

x Text Hexadecimal integer. For example, D4A2.

pr Text Polynomial with ascending coefficients.

pf Text Polynomial with descending coefficients.

pv x Text Polynomial with x as the dependent variable.

fb Binary Real.

ib Binary Integer.

ub Binary Unsigned integer.

Chapter 7 Function Reference — export

© National Instruments Corporation 7-141 HiQ Reference Manual

modifiers Indicates the numeric field width, number of digits to the right of the
decimal point, and whether to discard the data. (Optional)

wn For text destination: Specifies the width of the numeric field in
number of characters.

For binary destination: Specifies the width of the number in
number of bits.

pn Specifies the number of digits of precision to the right of the
decimal point. (Default = p6.)

p* Tells HiQ to automatically determine the precision.

en Specifies the number of digits in the exponent. Valid values of n
are 1, 2 and 3.

d Writes a 0 formatted to the specified options for text formats. For
binary formats if the write would extend the length of the file then
a 0 is written according to the specified options. In binary mode
if you are writing over an already written portion of the file it will
simply seek past the position leaving it untouched. This allows
you to do binary writes that interleave data.

jr Specifies to right justify the formatted number within the
specified width. (Default.)

jl Specifies to left justify the formatted number within the specified
width. (Default.)

wc Turns width control on. This automatically adjusts the precision
to fit within the width specified by wn. If the formatted number
does not fit, then the width is increased appropriately.

wc Turns width control off. (Default.)

wc# For width control, this fills the entire width with # signs if the
formatted number does not fit.

wc... For width control, replaces each of the last three characters with
a dot if the formatted number does not fit.

wce For width control, replaces the last character with the ellipses
character if the formatted number does not fit.

zp Zero pad the width of this format.

zp+ Zero pad the width of this format.

zp- Do not zero pad the width of this format. (Default.)

Parameter Description

Chapter 7 Function Reference — export

HiQ Reference Manual 7-142 © National Instruments Corporation

Examples of valid format description strings include the following.

%delimiters[,]%5f%5i

%5f[w8p3]

%co[f[w6p2]]

%2cd[f[w6p2]i[w2]]

tz Removes trailing zeros. (Default.)

tz+ Removes trailing zeros.

tz- Do not remove trailing zeros.

~ If the formatted string results in 0 and the original number is not
identically 0, then output ~0.

~- Do not format 0 strings with ~0. (Default.)

cType Indicates the data is a complex number and specifies the complex
format. The optional modifier for cType , type [modifiers], describes
the format of each of the two components of the complex number. If you
provide only one modifier type [modifiers], that modifier is used for
both components. The valid values for cType are defined in the
following table.

co Ordered pair (real , imaginary) . (Default.)

ci Sum, i format real + imaginary i .

cj Sum, j format real + imaginary j .

cd Polar, degrees, magnitude @ degrees ° .

cr Polar, radians, magnitude @ radians r .

cg Polar, grads, magnitude @ grads g.

Each complex type can be modified by inserting the characters inside the
outer modifier brackets.

s Turns space control on. This will strip extra spaces in the
formatting of the complex number.

s- Turns space control off. (Default.)

jr Specifies to right justify the formatted number within the specified
width. (Default for real part.)

jl Specifies to left justify the formatted number within the specified
width. (Default for imaginary part.)

Parameter Description

Chapter 7 Function Reference — export

© National Instruments Corporation 7-143 HiQ Reference Manual

Internal Description
The internal description string describes the HiQ object to export. The valid identifiers for the
internal description string are defined in the following table.

See Also
import

Target
Identifier Description

%transpose Transpose the data while writing to the target. Reverses the meaning
of row and column counts.

Chapter 7 Function Reference — fact

HiQ Reference Manual 7-144 © National Instruments Corporation

fact

Purpose
Computes the factorial of a number.

Usage
y = fact(n)

Parameters

Comments
The factorial function is defined by the following equation.

See Also
gamma

Name Type Description

n Integer Scalar The input argument.

y Real Scalar The factorial of the input.

fact n() n! i
i 1=

n

∏= =

Chapter 7 Function Reference — fCosI

© National Instruments Corporation 7-145 HiQ Reference Manual

fCosI

Purpose
Computes the Fresnel cosine integral function.

Usage
y = fCosI(x)

Parameters

Comments
The Fresnel cosine integral is defined by the following equation.

Examples
Illustrating Cornu’s spiral.
// Graph the Cornu's Spiral based on the Fresnel Integrals.

// Define the domain for the parametric curve and

// compute x and y based on the domain.

t = seq(-5, 5, 10000, <pts>);

xt = eval(fCosI , t);

yt = eval(fSinI, t);

// Generate the spiral given the computed parameters.

cornuSpiral = createGraph(xt, yt);

See Also
dawson , erf , erfc , fSinI

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the Fresnel cosine integral.

C x() π
2
---t

2

 cos td

0

x

∫=

Chapter 7 Function Reference — fill

HiQ Reference Manual 7-146 © National Instruments Corporation

fill

Purpose
Creates a vector or matrix initialized with a value.

Usage
Creates an m-element vector initialized with the value x.

a = fill(m, x)

Creates an mxn matrix initialized with the value x.
A = fill(m, n, x)

Parameters

Comments
All elements of the vector or matrix are set to the fill value.

See Also
createMatrix , createVector , ident , ones , seq

Name Type Description

m Integer Scalar The number of rows to create.

x Scalar The value used to fill the matrix.

n Integer Scalar The number of columns to create.

a Vector The m-element output vector.

A Matrix The mxn output matrix.

Chapter 7 Function Reference — find

© National Instruments Corporation 7-147 HiQ Reference Manual

find

Purpose
Finds the occurrences of an element in a vector or matrix.

Usage
Finds the occurrences of a scalar in a vector or matrix.

[found, foundIndices, nFound] = find(x, value)

Finds the occurrences of a set of scalars in a vector or matrix.
[found, foundIndices, nFound, valIndices] = find(x, values,

<elements>)

Finds the occurrences of a subvector or submatrix in a vector or matrix.
[found, foundIndices, nFound] = find(x, xSub)

Finds the occurrences of a subvector in a matrix.
[found, foundIndices, nFound] = find(X, Xsub , direction)

Finds the occurrences of elements satisfying a predefined condition in a vector or matrix.
[found, foundIndices, nFound] = find(x, operator, base)

Finds the occurrences of elements satisfying a user defined condition in a vector or matrix.
[found, foundIndices, nFound] = find(x, findFct)

Parameters

Name Type Description

x Vector or Matrix The input vector or matrix to search.

value Scalar The element to find.

values Vector or Matrix The elements to find.

xSub Vector or Matrix The subvector or submatrix to find.

X Matrix The input matrix to search.

Xsub Vector The subvector to find.

direction HiQ Constant Specifies whether to search rows or columns.
(Optional. Default = <row>)

<row>
<column>

Chapter 7 Function Reference — find

HiQ Reference Manual 7-148 © National Instruments Corporation

Comments
The search in vectors is performed from first element to last. The search in matrices is
performed row-wise, first column to last. If you are searching for a set of elements and the set
of elements contains duplicate values, only the first value is used to find a match.

When searching for scalars (or sets of scalars), each occurrence of a scalar is returned in the
object found . When searching for a subvector or a submatrix, the object found contains only
one instance of the subvector or submatrix found.

The object type and size of foundIndices is directly related to the type of objects being
searched and found.

operator HiQ Constant A predefined operator with which to compare
values.

<GT>
<LT>
<GE>
<LE>
<NE>

base Scalar An additional parameter for use with the
predefined operator.

findFct Function A user function that determines which values
to find.

found Vector or Matrix The found elements.

foundIndices Integer Vector or
Matrix

The indices of the found elements.

nFound Integer Scalar The number of matches found.

valIndices Integer Vector or
Matrix

The indices into the input set of values
corresponding to the actual values found.

Name Type Description

Chapter 7 Function Reference — find

© National Instruments Corporation 7-149 HiQ Reference Manual

If searching for a subvector, each row of an nx2 matrix represents the range of the subvector
found. Otherwise, each row of an nx2 matrix represents the row and column index of the
scalar found. Each row of an nx4 matrix represents the row and column indices of the upper
left (the first two elements of the row) and lower right (the last two elements of the row)
corners of the occurrence of the found object in the matrix.

If the input parameter values is a vector, the return object valIndices is a vector of
indices. If the input parameter values is a matrix, the return object valIndices is a matrix
of row and column indices.

When no items are found, this function returns 0 for integer, <nan> for reals and (<nan> ,
<nan>) for complex. For indices, a 1-element vector, a 1x2 matrix, or a 1x4 matrix will be
returned containing zeros.

The user-defined find function, findFct , for the usage above has the following definitions:

// Function definition for searches performed on vectors.

function findFct(x, i)

// x - The current vector element under inspection

// i - The index of the current vector element

// return options:

// true - x meets the user-defined condition

// false - x does not meet the user-defined condition

end function;

Search Object Find Object Options Indices

vector scalar vector

vector subvector nx2 matrix

vector vector <elements> vector

matrix scalar nx2 matrix

matrix subvector <row> or <column> nx4 matrix

matrix submatrix nx4 matrix

matrix matrix <elements> nx2 matrix

Chapter 7 Function Reference — find

HiQ Reference Manual 7-150 © National Instruments Corporation

// Function definition for searches performed on matrices.

function findFct(x, i, j)

// x - is the current matrix element under inspection

// i - is the row index of the current matrix element

// j - is the column index of the current matrix element

// return options:

// true - x meets the user-defined condition

// false - x does not meet the user-defined condition

end function;

See Also
remove , replace , subrange

Chapter 7 Function Reference — fit

© National Instruments Corporation 7-151 HiQ Reference Manual

fit

Purpose
Computes the parameters of a function that best fit a data set.

Usage
Computes the parameters of a pre-defined function that best fit a data set.

[a, res, q, aVar, yFit] = fit(x, y, <line>, w)

[a, res, q, aVar, yFit] = fit(x, y, <exp>, w)

[a, res, q, aVar, yFit] = fit(x, y, <gauss>, a0, method, tolr, w)

Creates the polynomial object that best fits a data set.
yPoly = fit(x, y, <poly>, n, w)

Computes the parameters of a single-variable nonlinear function that best fit a data set.
[a, res, q, aVar, yFit] = fit(x, y, sFct, a0, method, tolr, iterMax,

w, rhoFct)

Computes the parameters of a multi-variable nonlinear function that best fit a data set.
[a, res, q, aVar, yFit] = fit(X, y, mFct, a0, method, tolr, iterMax,

w, rhoFct)

Computes the linear combination of a set of basis functions that best fit a data set.
[a, res, q, aVar, yFit] = fit(x, y, basisFct, basisMethod, w)

Parameters

Name Type Description

x Real Vector An n-element vector of independent data
points.

y Real Vector An n-element vector of dependent data points.

w Real Vector An n-element vector of parameter weights.
(Optional. Default = w[i] = 1.0)

a0 Real Vector The m-element vector of initial guesses for the
function parameters.

method HiQ Constant The unconstrained optimization algorithm to
use. (Optional. Default = <marquardt>)

<marquardt>
<quasiNewton>
<conjGrad>

Chapter 7 Function Reference — fit

HiQ Reference Manual 7-152 © National Instruments Corporation

tolr Real Scalar The tolerance to use.
(Optional. Default = .0001)

n Integer Scalar The order of the polynomial to fit.

sFct Function The single-dimension nonlinear function to fit.

iterMax Integer Scalar The maximum number of iterations to allow.
(Optional. Default = 32)

rhoFct Function A robust estimation function. (Optional.)

X Real Matrix An nxk matrix of independent data points.

mFct Function The multi-dimensional nonlinear function
to fit.

basisFct Function The set of basis functions to use.

basisMethod HiQ Constant The algorithm to use.
(Optional. Default = <housefullrank>)

<SVD>
<givensFullRank>
<houseDefRank>
<givensDefRank>
<houseFullRank>

a Real Vector The parameters that best fit the function to the
data.

res Real Scalar The residual of the resulting data fit.

q Real Scalar The goodness-of-fit value.

aVar Real Scalar The variance of the best-fit parameters.

yFit Vector The best fit evaluated at each of the input
values in x.

yPoly Polynomial The polynomial object that best fits the data.

Name Type Description

Chapter 7 Function Reference — fit

© National Instruments Corporation 7-153 HiQ Reference Manual

Comments
The computed best-fit parameters are returned in the vector a. For polynomial data fitting, this
function returns the best-fit polynomial object. The coefficients of the polynomial are the
best-fit parameters.

Each usage, except for the multi-variable nonlinear fit, now supports an implicit domain. For
example, the following usage is valid.

[a, res, q, aVar, yFit] = fit(y,<line>);

In this usage, the domain is assumed to be the following.

x = seq(y.size);

You can choose a predefined function to fit your data or supply your own user-defined
function. HiQ fits the following predefined equations.

HiQ fits the following user-defined equations.

For the single-variable nonlinear equation, each element of the input vector x corresponds to
the value of the independent variable for each element in y.

Usage Equation

a = fit(x, y, <line>);

a = fit(x, y, <exp>);

a = fit(x, y, <gauss>, a0);

Usage Equation

a = fit(x, y, f, a0);

a = fit(x, y, f, a0);

a = fit(x, y, f, basisMethod);

y a1x a2+=

y a1e
a2x

=

y a3e

x a1–()2–

2a2()2

=

y f a x,() f a1 a2 … an x, , , ,()= =

y f a x,() f a1 a2 … an x1 x2 … xm, , , , , , ,()= =

y ai fi x()
i 1=

n

∑=

Chapter 7 Function Reference — fit

HiQ Reference Manual 7-154 © National Instruments Corporation

For the multi-variable nonlinear equation, each row of the input matrix X corresponds to the
values of the independent variables for each element in y. Each column of the input matrix X
corresponds to a separate independent variable. For example, a data set y containing
200 points that is a function of five independent variables requires an input matrix X
and a 200-element input vector y.

To fit the single-variable and multi-variable nonlinear equations, HiQ uses one of several
available unconstrained optimization algorithms. To fit the single-variable linear combination
of basis functions, HiQ uses one of several available least-squares algorithms. Refer to the
functions optimize and solve for more information on these algorithms.

The computed parameters minimize the sum of the squares of the weighted differences at
each data point. For example, the best-fit parameters a of a single-variable nonlinear equation
minimizes

where r is the residual of the fit.

The weighting parameter w gives you the flexibility to modify the influence of each data point
on the resulting fit. A smaller value of wi places more emphasis on the data fit for data point
yi. For statistical data fitting, wi represents the standard deviation of the measurement yi.
This function also computes two statistics at the best-fit solution. The return parameter q
() represents the chi-square goodness-of-fit statistic of the data fit. A chi-square
value of zero indicates a bad fit and a value of one indicates a good fit. The return parameter
aCov is the matrix of covariances between each of the best-fit parameters. The diagonal
elements of this matrix are the variances of each parameter and are a measure of uncertainty
in each parameter. The off-diagonal elements are the covariances of the parameters. Smaller
elements in this matrix indicate less uncertainty in the computed parameters.

A more flexible approach to modifying the influence of each data point on the resulting fit is
to change the performance function. The default performance function is

 where

200 5×

r
yi fi a x,()–()2

wi
2

i 1=

n

∑=

0 q 1≤ ≤

r
yi fi a x,()–()2

wi
2

---------------------------------- z
2

i 1=

n

∑=
i 1=

n

∑= z
yi fi a x,()–

wi

---------------------------=

Chapter 7 Function Reference — fit

© National Instruments Corporation 7-155 HiQ Reference Manual

You can modify the performance function with a user-defined robust estimation function
 (parameter rhoFct)

The default estimation function is

Examples of robust estimation functions include

and

To avoid numerical problems, you should define an estimation function that is differentiable.
For example, the following script implements , avoiding problems at .

function rho(z)

if abs(z) < 1 then

return z^2;

else

return abs(z);z

end function;

See Also
fitEval , interp , optimize , spline

ρ z()

r ρ z()
i 1=

n

∑=

ρ z() z2=

ρ z() 1 z2

x
----+

 ln=

ρ z() z=

ρ z() z= z 0=

Chapter 7 Function Reference — fitEval

HiQ Reference Manual 7-156 © National Instruments Corporation

fitEval

Purpose
Evaluates a fit at the given points.

Usage
Evaluates the fit of a predefined function.

y = fitEval(x, fitType, a)

Evaluates the polynomial fit.
y = fitEval(x, <poly>, p)

Evaluates the single variable fit model at a set of values.
y = fitEval(x, sFct, a)

Evaluates the multi-variable fit model at a set of values.
y = fitEval(X, mFct, a)

Evaluates the linear combination of basis functions at a set of values.
y = fitEval(x, <basis>, basisFct, a)

Parameters

Name Type Description

x Real Vector The vector of values to evaluate the fit.

fitType HiQ Constant The predefined function used to define the fit
model.

<exp>
<gauss>
<line>

a Real Vector The coefficients defining the fit model.

p Real Polynomial The polynomial representing the fit model.

sFct Function The function used to define the single-variable
fit model.

X Real Matrix The matrix of values to evaluate a
multi-variable fit.

mFct Function The function used to define the multi-variable
fit model.

Chapter 7 Function Reference — fitEval

© National Instruments Corporation 7-157 HiQ Reference Manual

Comments
The function fit computes the best-fit parameters of a fit model and evaluates the model at the
values used to determine the fit. You can use the function fitEval to evaluate the best-fit
model returned from the function fit at any set of values without having to recompute the
best-fit parameters.

HiQ fits the following predefined equations.

HiQ fits the following user-defined equations.

For the single-variable nonlinear equation, each element of the input vector x corresponds to
the value of the independent variable for each element in y.

For the multi-variable nonlinear equation, each row of the input matrix X corresponds to the
values of the independent variables for each element in y. Each column of the input matrix X
corresponds to a separate independent variable. For example, a data set y containing
200 points that is a function of five independent variables requires an 200x5 input matrix X
and a 200-element input vector y.

See Also
fit , interp , interpEval , spline , splineEval

basisFct Function The set of basis functions defining the fit
model.

y Vector The fit evaluated at the given points.

Usage Equation

y = fitEval(x, <line>, a);

y = fitEval(x, <exp>, a);

y = fitEval(x, <gauss>, a);

Usage Equation

y = fitEval(x, f, a);

y = fitEval(x, f, a);

y = fitEval(x, <basis>, a);

Name Type Description

y a1x a2+=

y a1e
a2x

=

y a3e

x a1–()–
2

2a2()2

=

y f a x,() f a1 a2 … an x, , , ,()= =

y f a x,() f a1 a2 … an x1 x2 … xm, , , , , , ,()= =

y ai fi x()
i 1=

n

∑=

Chapter 7 Function Reference — floor

HiQ Reference Manual 7-158 © National Instruments Corporation

floor

Purpose
Rounds a number towards negative infinity.

Usage
y = floor(x)

Parameters

Comments
For vector and matrix objects, floor(x) returns the floor of the input on an
element-by-element basis.

Examples
Computing the floor of a vector of data.
// Generate two step functions that 'surround' a

// data set and graph the results.

// Create a set of 500 points in (-5, 5) sorted by size.

data = createVector(25, <random>, 1, 25, <uniform>);

data = sort(data);

// Create the graph and plot the generated data.

[graph, plotData] = createGraph(data);

// Once the graph is created, add the plots of the

// upper and lower bounds for the data.

plotTop = addPlot(graph, ceil(data));

plotBottom = addPlot(graph, floor (data));

Name Type Description

x Real Scalar, Vector,
or Matrix

The input argument.

y Real Scalar, Vector,
or Matrix

The rounded value.

Chapter 7 Function Reference — floor

© National Instruments Corporation 7-159 HiQ Reference Manual

// Change the plot color and style to make the plots

// easier to distinguish.

graph.plot(plotData).style = <point>;

graph.plot(plotData).point.size = 2;

graph.plot(plotTop).line.color = <ltblue>;

graph.plot(plotBottom).line.color = <red>;

See Also
ceil , round

Chapter 7 Function Reference — flush

HiQ Reference Manual 7-160 © National Instruments Corporation

flush

Purpose
Flushes the contents of the file buffer to disk.

Usage
flush(fid)

Parameters

Comments
Data written to a file often resides in a buffer until the buffer fills up or until the file is closed.
This function forces the buffer to write any data to the file.

See Also
close , deleteFile , open

Name Type Description

fid Integer Scalar The file ID of the file to flush.

Chapter 7 Function Reference — fPart

© National Instruments Corporation 7-161 HiQ Reference Manual

fPart

Purpose
Computes the fractional part of a number.

Usage
y = fPart(x)

Parameters

Comments
The result retains the sign of the input. For example, the following script returns a value
of –0.82 for y.

y = fPart(–4.82);

For vector and matrix inputs, fPart(x) returns the fractional part of the input on an
element-by-element basis

See Also
ceil , floor , iPart , round , toInteger

Name Type Description

x Scalar, Vector, or
Matrix

The input argument.

y Scalar, Vector, or
Matrix

The fractional part of the input argument.

Chapter 7 Function Reference — fSinI

HiQ Reference Manual 7-162 © National Instruments Corporation

fSinI

Purpose
Computes the Fresnel sine integral function.

Usage
y = fSinI(x)

Parameters

Comments
The Fresnel sine integral is defined by the following equation.

See Also
dawson , erf , erfc , fCosI

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the Fresnel sine integral.

S x() π
2
--- t

2

 sin td

0

x

∫=

Chapter 7 Function Reference — gamma

© National Instruments Corporation 7-163 HiQ Reference Manual

gamma

Purpose
Computes the gamma function.

Usage
Computes the complete gamma function.

y = gamma(x)

Computes the incomplete gamma function.
y = gamma(x, a)

Parameters

Comments
The gamma function is defined as

It is related to the factorial function by the identity

The incomplete gamma function is defined as

Name Type Description

x Real Scalar The input argument.

a Real Scalar The upper limit of the incomplete gamma
function.

y Real Scalar The value of the gamma function.

Γ x() t
x 1–

e
t–

td

0

∞

∫=

Γ n 1+() n! for integer n=

Γ x a,() 1
Γ x()
----------- t

x 1–
e

t–
td

0

a

∫=

Chapter 7 Function Reference — gamma

HiQ Reference Manual 7-164 © National Instruments Corporation

Examples
Computing the Bateman’s G function and the derivative of the gamma
function.
// Use the digamma function to compute the Bateman's G function

// and the derivative of the gamma function.

// Choose the evaluation point for the Bateman's G function.

x = random(-5, 5);

// Define the G function in terms of digamma().

G = {f:x:"digamma(.5*(x+1.0)) - digamma(.5*x)"};

// Compute the Bateman's G function at the evaluation point.

y = G(x);

// Compute the derivative of the gamma function at x.

dGamma = gamma(x)*digamma(x);

See Also
beta , digamma, fact , gammaC

Chapter 7 Function Reference — gammaC

© National Instruments Corporation 7-165 HiQ Reference Manual

gammaC

Purpose
Computes the complementary incomplete gamma function.

Usage
y = gammaC(x, a)

Parameters

Comments
The complement of the incomplete gamma function is defined as

It is related to the incomplete gamma function by the identity

See Also
gamma

Name Type Description

x Real Scalar The input argument.

a Real Scalar The upper limit of the incomplete
complementary gamma integral.

y Real Scalar The value of the complementary gamma
function.

Γc x a,() 1
Γ x()
----------- t x 1– e t– td

a

∞

∫=

Γ x a,() Γc x a,()+ 1=

Chapter 7 Function Reference — gauss

HiQ Reference Manual 7-166 © National Instruments Corporation

gauss

Purpose
Computes the Gauss hypergeometric function.

Usage
y = gauss(x, a, b, c)

Parameters

Comments
The Gauss hypergeometric function, F(x,a,b,c), is a solution of the differential equation

See Also
kummer, tricomi

Name Type Description

x Real Scalar The input argument.

a Real Scalar The third parameter of the Gauss
hypergeometric function.

b Real Scalar The second parameter of the Gauss
hypergeometric function.

c Real Scalar The first parameter of the Gauss
hypergeometric function.

y Real Scalar The value of the Gauss hypergeometric
function.

x 1 x–()d2w

dx
2

--------- c a b 1+ +()x–[]dw
dx
------- abw–+ 0=

Chapter 7 Function Reference — gcd

© National Instruments Corporation 7-167 HiQ Reference Manual

gcd

Purpose
Computes the greatest common divisor of two numbers or polynomials.

Usage
Calculates the greatest common divisor of two integers.

y = gcd(a, b)

Calculates the greatest common divisor of a set of integers.
y = gcd(x)

Calculates the greatest common divisor of two polynomials.
y = gcd(p, q, tolr)

Parameters

Name Type Description

a Integer Scalar The first input argument.

b Integer Scalar The second input argument.

x Integer Vector A vector of integers.

p Polynomial The first polynomial argument.

q Polynomial The second polynomial argument.

tolr Real Scalar Relative tolerance. (Optional.)

y Integer Scalar or
Real or Complex
Polynomial

The greatest common divisor of the input
arguments.

Chapter 7 Function Reference — gcd

HiQ Reference Manual 7-168 © National Instruments Corporation

Comments
If the inputs are relatively prime, the value of the result is one.

HiQ uses the Euclid algorithm to calculate the greatest common divisor of two polynomials.
This algorithm computes divisors whose remainder is less than a specified tolerance value
tolr . The result is a normalized polynomial. (The leading coefficient of the polynomial is
equal to one.) The default is

where n is the maximum degree of the two polynomials and ε is the constant <epsilon> .

See Also
lcm

2
n2 1+ ε

Chapter 7 Function Reference — getFileName

© National Instruments Corporation 7-169 HiQ Reference Manual

getFileName

Purpose
Displays the file dialog box prompting for an existing filename.

Usage
file = getFileName(path, filter, iFilter, title)

Creates a temporary file.
file = getFileName(<temp> , baseName)

Parameters

Comments
The parameter filter is a list of filter name and filter type pairs separated by vertical bars (|)
as follows.

Filter_Name_1|Filter_1|Filter_Name_2|Filter_2|...|Filter_Name_n|Filter_n|

The filter name appears in the Files of Type pull-down menu of the dialog box. Users can
choose from among any of the file types you specify in your filter string. For example, the
following getFileName function call prompts the user with the Open dialog box and allows
file searches for two file types, including All Files (*.*), in the current directory:

getFileName("", "All Files (*.*)|*.*|Data Files (*.dat)|*.dat", 1, "Open");

Name Type Description

path Text The initial directory path to display. (Optional.)

filter Text A list of file types (suffixes) to display.
(Optional.)

iFilter Integer Scalar An index (to filter) that is the default file type
to display. (Optional. Default = 1)

title Text The title of the dialog box. (Optional.)

baseName Text The base name to use for the temporary file.
(Optional. Default = HiQ)

file Text The full path and name of the selected file.

Chapter 7 Function Reference — getFileName

HiQ Reference Manual 7-170 © National Instruments Corporation

Examples
Prompting for a file of a specific type (HiQ-Script).
This example show how to prompt the user for an Excel file, only displaying files with a .xls
extension in the file dialog box.

//Prompt for a file name. Only files with a .xls extension

//are displayed in the file dialog box.

file = getFileName ("c:\", "Excel files | *.xls");

//Import all of the data on the first sheet of the Excel

//notebook.

A = import(file,"%excel::");

//Import all of the data on the second sheet.

B = import(file,"%excel[Sheet2]::");

//Import the data in cells A3 to C9 on the third sheet.

C = import(file,"%excel[Sheet3]%range[A3:C9]::");

See Also
putFileName

Chapter 7 Function Reference — getFilePos

© National Instruments Corporation 7-171 HiQ Reference Manual

getFilePos

Purpose
Returns the current position of the file pointer.

Usage
pos = getFilePos(fid)

Parameters

Comments
You can use this function to ensure you are reading from or writing to the correct location in
a structured file.

See Also
close , getFileSize , isEOF , open

Name Type Description

fid Integer Scalar A valid file ID.

pos Integer Scalar The current position of the file pointer in bytes
from the beginning of file.

Chapter 7 Function Reference — getFileSize

HiQ Reference Manual 7-172 © National Instruments Corporation

getFileSize

Purpose
Returns the size of a file.

Usage
n = getFileSize(fid)

Parameters

Comments
You can use this function to indicate the size of the data in the file and therefore the memory
required to import the data.

See Also
close , getFilePos , isEOF , open

Name Type Description

fid Integer Scalar A valid file ID returned from open.

n Integer Scalar The number of bytes in the file.

Chapter 7 Function Reference — getNumber

© National Instruments Corporation 7-173 HiQ Reference Manual

getNumber

Purpose
Displays a dialog box prompting for a numeric object.

Usage
y = getNumber(prompt, default)

Parameters

Comments
HiQ creates an integer, real, or scalar object depending on the number entered. For example,
the number (1,1) creates the complex scalar . The number creates a real
scalar. The number 64 creates an integer scalar. You must enter a valid number to continue
execution of the script.

See Also
getText

Name Type Description

prompt Text or Real Scalar Prompt to be displayed in the dialog box.
(Optional. Default = “Enter number:”)

default Real Scalar The default value. (Optional. Default = 0)

y Real Scalar The value entered in the dialog box.

1 1i+ 1.0e 6–

Chapter 7 Function Reference — getText

HiQ Reference Manual 7-174 © National Instruments Corporation

getText

Purpose
Displays a dialog box prompting for a text object.

Usage
y = getText(prompt, default)

Parameters

Comments
You can enter only one line of text. The created text object does not contain a carriage return
or line feed character.

See Also
getNumber

Name Type Description

prompt Text Prompt to be displayed in the dialog box.
(Optional. Default = "Enter string:")

default Text The default value. (Optional.)

y Text The value entered in the dialog box.

Chapter 7 Function Reference — givens

© National Instruments Corporation 7-175 HiQ Reference Manual

givens

Purpose
Computes the Givens rotation parameters of a two-element vector.

Usage
Computes the Givens rotation parameters of a two-element vector.

[c, s, rho] = givens(v , elem1, elem2)

Decodes the Givens parameters from the single parameter.
[c, s] = givens(rho)

Parameters

Comments
The Givens rotation G is a 2D, orthogonal transformation that rotates the input vector x
counter-clockwise through an angle such that the second element of the vector
is zero.

 where

Name Type Description

v Real Vector The input vector.

elem1 Integer Scalar The first element of the vector to use.
(Optional. Default = 1)

elem2 Integer Scalar The second element of the vector to use.
(Optional. Default = 2)

rho Real Scalar A single input parameter encoding the Givens
parameters c and s .

c Real Scalar The first term of the Givens rotation.

s Real Scalar The second term of the Givens rotation.

rho Real Scalar Return parameters c and s encoded into a
single parameter.

θ y GTx=

y1

0
GT x1

x2

= G c s

s– c

θ()cos θ()sin

θ()sin– θ()cos
= =

Chapter 7 Function Reference — givens

HiQ Reference Manual 7-176 © National Instruments Corporation

You can use the Givens rotations to selectively introduce zeros into a matrix and to perform
coordinate system transformations. This function returns the parameters c and s of G without
computing the value of the angle to prevent problems associated with inverse trigonometric
calculations.

Because Givens is an orthogonal transformation, the parameters c and s are related by the
identity

and therefore can be encoded by a single value rho . You can use this value in a subsequent
call to Givens to extract the values c and s as follows.

[c, s] = Givens(rho)

See Also
rotate

θ

c
2

s
2+ 1=

Chapter 7 Function Reference — gradient

© National Instruments Corporation 7-177 HiQ Reference Manual

gradient

Purpose
Computes the gradient of a function.

Usage
y = gradient(fct, x , h, method)

Parameters

Comments
Given a scalar-valued function f of several variables

the gradient vector v of the function f is defined by the following equation.

Name Type Description

fct Function The input function.

x Real Vector The vector of values.

h Real Scalar The step size to use. (Optional.)

method HiQ Constant The finite difference method to use. (Optional.
Default = <central>)

<extended>
<forward>
<central>

y Real Vector The gradient of the function.

y f x1 … xn, ,()=

v grad f ∇f

∂f
∂x1

...
∂f

∂xn

===

Chapter 7 Function Reference — gradient

HiQ Reference Manual 7-178 © National Instruments Corporation

If the step size is equal to zero, HiQ chooses an appropriate step size based on the precision
of your computer.

The forward, central, and extended central finite difference formulas result in finite difference
approximations of order one, two, and four respectively.

See Also
curl , derivative , div , laplacian

Chapter 7 Function Reference — guder

© National Instruments Corporation 7-179 HiQ Reference Manual

guder

Purpose
Computes the gudermannian function.

Usage
y = guder(x)

Parameters

See Also
guderInv

Name Type Description

x Real Scalar The input argument.

y Real Scalar The gudermannian of the input.

Chapter 7 Function Reference — guderInv

HiQ Reference Manual 7-180 © National Instruments Corporation

guderInv

Purpose
Computes the inverse of the gudermannian function.

Usage
y = guderInv(x)

Parameters

See Also
guder

Name Type Description

x Real Scalar The input argument.

y Real Scalar The inverse gudermannian of the input.

Chapter 7 Function Reference — hessenbergD

© National Instruments Corporation 7-181 HiQ Reference Manual

hessenbergD

Purpose
Computes the Hessenberg decomposition of a matrix.

Usage
[H, Q] = hessenbergD(A , nType)

Parameters

Comments
The Hessenberg decomposition (or Hessenberg normal form) of a matrix A is defined as

where Q is orthogonal and H is a Hessenberg matrix. A Hessenberg matrix is defined as a
matrix H with zeros under the main subdiagonal:

Name Type Description

A Real Matrix The square nxn input matrix.

nType HiQ Constant The type of orthogonal transformation to use.
(Optional. Default = <house>)

<house>
<givens>

H Real Matrix A square nxn Hessenberg matrix.

Q Real Matrix A square nxn orthogonal matrix.

A QHQ T=

H

H11 H12 … H1n

H21 H22 ...
0 . . .

 ...
. . .

0 … 0 Hnn

=

Chapter 7 Function Reference — hessenbergD

HiQ Reference Manual 7-182 © National Instruments Corporation

This normal form is used in matrix analysis to reduce the required number of computations.
For example, consider the linear system

for several values of and b. The Hessenberg form is invariant. This system
is equivalent to

The solution to this new system requires only operations because of the number of
zeros in H.

This function introduces zeros using either Householder reflections or Givens rotations.
Householder reflections are more efficient for introducing many zeros into the matrix and
HiQ uses this method by default. Givens rotations might be more efficient for introducing
zeros when the input matrix already has many zeros below the diagonal.

If Q is not requested, this function executes faster.

See Also
LUD, QRD, schurD , SVD

A λ I–()x b=

λ H λ() H λI–=

H λ I–()y Qb=

x Qy=

O n
2()

Chapter 7 Function Reference — hessian

© National Instruments Corporation 7-183 HiQ Reference Manual

hessian

Purpose
Computes the Hessian of a function.

Usage
y = hessian(fct, x0 , h, method)

Parameters

Comments
Given a scalar-valued function f of several variables

the Hessian matrix A of the function f is defined by the following equation.

If the step size is equal to zero, HiQ chooses an appropriate step size based on the precision
of your computer.

Name Type Description

fct Function The input function of n equations in m
variables.

x0 Real Vector The point at which to calculate the Hessian.
Must have m elements.

h Real Scalar The step size to use. (Optional.)

method HiQ Constant The finite difference method to use. (Optional.
Default = <central>)

<forward>
<central>

y Real Matrix The mxn Hessian matrix.

y f x1 … xn, ,()=

A
a11 … a1n

 ...
.

an1 … ann

aij, ∂2f
∂xi∂xj

---------------= =

Chapter 7 Function Reference — hessian

HiQ Reference Manual 7-184 © National Instruments Corporation

The forward and central finite difference formulas result in finite difference approximations
of order one and two respectively.

See Also
derivative , jacobian , partial

Chapter 7 Function Reference — histogram

© National Instruments Corporation 7-185 HiQ Reference Manual

histogram

Purpose
Computes the histogram of a data set.

Usage
y = histogram(x, bin)

y = histogram(x, nBin)

Parameters

Comments
The histogram of an n-element data set x is the number of elements in the data set that lie
within each interval (bin) of a set of m intervals. Each interval is defined by the range

 where ;

Given a set of m monotonically increasing values b that define m contiguous intervals, then
the histogram h of a data set x is defined by the following equation.

See Also
quartile , range

Name Type Description

x Real Vector The input values.

bin Real Vector The values defining the bin boundaries.

nBin Integer Scalar The number of bins to create.

y Integer Vector The number of input values whose value lies
within each bin.

where

bi 1– bi],(i 1 2 … m, , ,= b0 ∞–=

hi number of elements in the set xj :bi 1– xj bi< <{ }=

i 1 2 … m, , ,=

j 1 2 … n, , ,=

b0 ∞–=

Chapter 7 Function Reference — householder

HiQ Reference Manual 7-186 © National Instruments Corporation

householder

Purpose
Computes the Householder reflection of a vector.

Usage
[v, lambda] = householder(x)

Parameters

Comments
The Householder reflection is an orthogonal transformation H that reflects the input vector x
into an output vector y such that all but the first element of y

are zero. This transformation can

be uniquely defined by the Householder vector v:

 where

Geometrically, H is the orthogonal reflection with respect to the hyperplane y

perpendicular

to v:

You can use the Householder reflection to efficiently introduce zeros in matrix columns or
rows. An optional return value, lambda , is defined as

Name Type Description

x Real Vector The input vector.

v Real Vector The Householder vector for the input.

lambda Real Scalar The Householder parameter −2/norm(v).

y1

0
Hx= H I 2vvT

v 2
------------–=

y: y v〈 | 〉 0={ }

λ 2

v 2
----------–=

Chapter 7 Function Reference — householder

© National Instruments Corporation 7-187 HiQ Reference Manual

The Householder vector and matrix exhibit the following properties:

v is normalized with

HiQ generates an error for the input vector .

See Also
givens , reflect , rotate

where

v x sign x1() x 2e1+=

v1 1=

Hx sign x1() x 2e1–=

H 1– HT H= =

x x1 x2 … xn, , ,()=

e1 1 0 … 0, , ,()=

x 0=

Chapter 7 Function Reference — ident

HiQ Reference Manual 7-188 © National Instruments Corporation

ident

Purpose
Creates an identity matrix.

Usage
A = ident(n)

Parameters

Comments
The identity matrix is a matrix with ones along the main diagonal.

See Also
createMatrix , fill

Name Type Description

n Integer Scalar The number of rows and columns to create.

A Real Matrix The resulting identity matrix.

1 0 … 0

0 1 ...
 0

0 … 0 1

Chapter 7 Function Reference — import

© National Instruments Corporation 7-189 HiQ Reference Manual

import

Purpose
Imports data from a file.

Usage
data = import(source , format, row, column, progressFct)

Parameters

Comments
HiQ uses the parameter format to convert data from a source object to a target object. For
the import function, the source object is a file and the target object is a HiQ object. HiQ
provides predefined constants for the most commonly used data format strings. If you do not
provide the parameter format , HiQ imports the data as numeric text and creates a matrix
object.

If provided, the parameters row and column determine the dimension of the resulting vector
or matrix object. If you only provide the row parameter, HiQ repetitively imports data from
the file using the format description row times. The resulting object has as many columns as
numbers imported on a single pass of the format description. If you provide both parameters,
HiQ imports enough data from the file to create an appropriately dimensioned matrix (or
vector if column is one). If these parameters are not provided, HiQ imports the entire source
file and creates a vector object if the source file is numeric binary data or a matrix object if
the source file is numeric text data. Each row in the resulting matrix contains the values on
each line of the source file. The matrix row elements are zero-padded to create a square matrix
if necessary.

Name Type Description

source File ID or Text A valid file ID returned by the function open or
a valid filename.

format Text Describes how to import the data. (Optional.)

row Integer Scalar Number of rows to create. (Optional.
Default = <toEndOfStream >)

column Integer Scalar Number of columns to create. (Optional.)

progressFct Function A user function that monitors the progress of
the import. (Optional.)

data Object An object containing the imported data.

Chapter 7 Function Reference — import

HiQ Reference Manual 7-190 © National Instruments Corporation

A format string is composed of three strings describing the external data source, the format
of the data, and the internal target object. These strings are separated by colons (:) as follows.

"[ExternalDescr]:[FormatDescr]:[InternalDescr]"

Each string is composed of identifiers preceded by a percent sign (%). These strings and their
identifiers are described in detail below for the import function.

External Description
The external source description string describes how the data is stored in the file. HiQ
supports both big endian and little endian byte ordering. The valid identifiers for the source
description string are defined in the following table.

Source Identifier Description

%littleendian

%intel

Bytes are stored in the file with the least significant byte first.
Intel CPU-based computers use little endian byte ordering.
(Default.)

%bigendian

%motorola

Bytes are stored in the file with the most significant byte first.
Motorola CPU-based computers use big endian byte
ordering.

%Excel

%Excel[sheet]

Source file is an Excel file. In the second form the name of
the sheet to be imported is specified. If omitted the first sheet
in the file is imported.

%range[A1style]

%range[HiQStyle]

For Excel files, indicates the desired cell range. If omitted all
cells with data are imported. The range can be the Excel A1
style (for example, %range[A1:C3]) or the HiQ-Script
subscript range style (for example, %range[1:3,1:3]). The
HiQ-Script range works exactly as in script except that if the
upper range is omitted it is assumed to be *. In other words
%range[1,1] is the same as %range[1:*,1:*] .

%comment[comments] Specifies which characters in the file indicate comments.
Everything from the comment to the end of the line is ignored
on import. For example, %comment[rem] causes everything
to the right of rem to be ignored.

Chapter 7 Function Reference — import

© National Instruments Corporation 7-191 HiQ Reference Manual

Format Description
The format description string describes how HiQ interprets the numeric data in the file.
For example, you can specify the numeric data as text or binary, the data as integer, real,
or complex, or the width and precision of a text numeric field. The import wizard
(Notebook»Import Data...) is a convenient place to learn how the format description string
works. In expert mode, you can enter and modify a format string and immediately view the
results in the Preview window. The valid identifiers for the format description string are
defined in the following table.

A format description string can have multiple numeric format identifiers but only one
delimiter format identifier. The components of a format identifier string are defined in the
following table.

Format Identifier Description

%delimiters[list] Delimiter identifier specifying the
characters that separate numeric values.
(Optional.)

%count type [modifiers] Numeric identifier describing the repeat
count and format type for integer and real
numeric values. (Optional.)

%count cType [type [modifiers]] Numeric identifier describing the repeat
count and format type for complex numeric
values. (Optional.)

Parameter Description

list A string of characters that delimit the numeric values in a file. If list
is empty, HiQ interprets any non-numeric character as a delimiter. For
special characters, use the following:
\t (tab)
\] (right square bracket)
\[(left square bracket)
\\ (backslash)

count Indicates the number of times to apply the format identifier. A value
of zero repeats the format identifier until HiQ reaches an end-of-line
character. A zero value is invalid with binary forms. (Optional.
Default = 1.)

Chapter 7 Function Reference — import

HiQ Reference Manual 7-192 © National Instruments Corporation

Examples of valid format description strings include the following.

%delimiters[,]

%5fb[w8]

%co[fb[w16]]

%2cd[fb[w16]ib[w8]]

Internal Description
The internal target description string describes the HiQ object to create with the data.
The valid identifiers for the target description string are defined in the following table.

type Indicates whether the data is text numeric or binary numeric and integer
or real. (Optional)

fb Binary Real.

ib Binary Integer.

ub Binary Unsigned integer.

modifiers Indicates the numeric field width, number of digits to the right of the
decimal point, and whether to discard the data. (Optional)

wn For text source: Specifies the width of the hexadecimal integer
field in number of characters. (Optional.) On import this must
be specified for every format if a fixed width import is used.

For binary source: Specifies the width of the number in number
of bits (not bytes). (Optional.)

d Tells HiQ to discard the number in this position after
importing. Note: If you are using this to read a rectangular
block of data it would be easier to use the %range source
descriptor in some cases. If you use this in combination with
the %range descriptor the %range filtering takes place after the
discard and the discarded data is not counted when applying
the %range filter.

Parameter Description

Chapter 7 Function Reference — import

© National Instruments Corporation 7-193 HiQ Reference Manual

HiQ imports data according to the format description string. If imported numeric data results
in more than one number, HiQ promotes the target object to a matrix regardless of the value
of the target identifier.

Examples
Importing data from Excel files (HiQ-Script).
This example shows how to import data from an Excel (.xls) file.

//Prompt for a file name. Only files with a .xls extension

//are displayed in the file dialog box.

file = getFileName("c:\", "Excel files | *.xls");

//Import all of the data on the first sheet of the

//Excel notebook.

A = import (file,"%excel::");

//Import all of the data on the second sheet.

B = import (file,"%excel[Sheet2]::");

//Import the data in cells A3 to C9 on the third sheet.

C = import (file,"%excel[Sheet3]%range[A3:C9]::");

See Also
export , read , toComplex , toInteger , toNumeric , toReal , toText

Target
Identifier Description

%scalar Create a scalar object. (Default.) If more than one value is found the
data is automatically promoted to matrix.

%vector Create a vector object.

%matrix Create a matrix object.

%poly

%polynomial

Create a polynomial object.

%transpose Transpose the data while writing to the target. Reverses the meaning
of row and column counts.

%text Create a text object.

%script Create a script object.

Chapter 7 Function Reference — integEqn

HiQ Reference Manual 7-194 © National Instruments Corporation

integEqn

Purpose
Solves a system of integral equations.

Usage
Solves a system of Volterra integral equations of the first kind.

[t, X, nIter] = integEqn(KFct, gFct, <Volterra1>, a, b, nSteps, x0 ,

xTolr, maxIter, iExtrap)

Solves a system of Volterra or Fredholm integral equations of the second kind.
[t, X, nIter] = integEqn(KFct, gFct, <Volterra2>, a, b, nSteps ,

xTolr, maxIter, iExtrap)

[t, X, nIter] = integEqn(KFct, gFct, <Fredholm2>, a, b, nSteps ,

xTolr, maxIter, iExtrap)

Parameters

Name Type Description

KFct Function The n kernel equations of the integral
equations.

gFct Function The n equations on the right side of the
equation.

a Real Scalar The left end-point of the solution interval.

b Real Scalar The right end-point of the solution interval.

nSteps Integer Scalar The number of steps in the solution interval.

x0 Real Vector The initial guess of the first solution.

xTolr Real Scalar The tolerance to use for the solution. (Optional.
Default = .0001)

maxIter Integer Scalar The maximum number of iterations to perform.
(Optional. Default = 32)

iExtrap Integer Scalar Indicates whether Richardson’s extrapolation
is used. (Optional. Default = false)

t Real Vector The vector of values of the independent
variable at the solution points.

Chapter 7 Function Reference — integEqn

© National Instruments Corporation 7-195 HiQ Reference Manual

Examples
1. Solving a Fredholm integral equation of the second kind.
This script solves a Fredholm integral equation of the second kind. It also illustrates the
increased accuracy when using Richardson’s extrapolation.

//The exact solution of this Fredholm integral equation

//of the second kind is

//f(t) = sin(t)

a = 0.0;

b = 1.0;

nSteps = 8;

//Without Richardson's extrapolation

[t1,X1]= integEqn (KEqn, gEqn, <Fredholm>, a, b, nSteps);

//With Richardson's extrapolation

[t2,X2]= integEqn (KEqn, gEqn, <Fredholm>, a, b, nSteps,,,true);

//Calculate the error between the exact solution

//and the computed solution.

//The solution using Richardson's extrapolation is more accurate.

error1 = norm(eval(sin,t1)-X1[:,1]);

error2 = norm(eval(sin,t2)-X2[:,1]);

function KEqn(t, s, f)

K[1] = -t*s*f[1]^2;

return K;

end function;

function gEqn(t)

g[1] = sin(t) + t*(3-2*sin(2)-cos(2))/8.0;

return g;

end function;

X Real Matrix The matrix of solution values.

nIter Integer Scalar The actual number of iterations performed.

Name Type Description

Chapter 7 Function Reference — integEqn

HiQ Reference Manual 7-196 © National Instruments Corporation

2. Solving a Volterra integral equation of the first kind.
This script solves a Volterra integral equation of the first kind. It also illustrates the increased
accuracy when using Richardson’s extrapolation.

//The exact solution of this Volterra integral equation

//of the first kind is

//f1(t) = 1

//f2(2) = t

a = 0.0;

b = 1.0;

nSteps = 8;

x0 = {v:0.5, 0.5};

//Without Richardson's extrapolation

[t1,X1]= integEqn (KEqn, gEqn, <Volterra1>, a, b, nSteps, x0);

//With Richardson's extrapolation

[t2,X2]= integEqn (KEqn, gEqn, <Volterra1>, a, b, nSteps, x0,,, true);

//Calculate the error between the exact solution

//and the computed solution.

//The solution using Richardson's extrapolation is more accurate.

exact = {ones(X1.rows);t1};

exact = exact';

error1 = norm(exact-X1);

error2 = norm(exact-X2);

function KEqn(t, s, f)

K[1] = exp(s-t)*f[1]^2+f[2];

K[2] = (t-s)*f[2]^2/(1+f[1]^2);

return K;

end function;

function gEqn(t)

g[1] = 1 - exp(-t)+t^2/2.0;

g[2] = t^4/24.0;

return g;

end function;

Chapter 7 Function Reference — integEqn

© National Instruments Corporation 7-197 HiQ Reference Manual

3. Solving a Volterra integral equation of the second kind.
This script solves a Volterra integral equation of the second kind. It also illustrates the
increased accuracy when using Richardson’s extrapolation.

//The exact solution of this Volterra integral equation of the second

//kind is

//f(t) = exp(t)

a = -1.0;

b = 1.0;

nSteps = 8;

//Without Richardson's extrapolation

[t1,X1]= integEqn (KEqn, gEqn, <Volterra2>, a, b, nSteps);

//With Richardson's extrapolation

[t2,X2]= integEqn (KEqn, gEqn, <Volterra2>, a, b, nSteps,,, true);

//Calculate the error between the exact solution

//and the computed solution.

//The solution using Richardson's extrapolation is more accurate.

exact = eval(exp,t1);

error1 = norm(exact-X1[:,1]);

error2 = norm(exact-X2[:,1]);

function KEqn(t, s, f)

K[1] = (t-s-1.5)*sqrt(t-s)*f[1];

return K;

end function;

function gEqn(t)

g[1] = exp(t)+((t+1)^(3/2))/<e>;

return g;

end function;

See Also
ODEBVP, ODEIVP

Chapter 7 Function Reference — integrate

HiQ Reference Manual 7-198 © National Instruments Corporation

integrate

Purpose
Computes the integral of a function, polynomial, or data set.

Usage
Integrates a data set over its entire interval.

z = integrate(x, y , idAlg)

Integrates a data set over a specified interval.
z = integrate(x, y, a, b , idAlg)

Integrates a function over a specified interval.
z = integrate(fct, a, b , ifAlg)

z = integrate(fct, a, b, <adSimpson> , nDiv, tolr)

z = integrate(fct, a, b, <gauss> , nOrder)

z = integrate(fct, a, b, <simpson> , nDiv)

z = integrate(fct, a, b, <trapezoid> , nDiv)

Integrates a weighted function over a specified or pre-defined interval.
z = integrate(fct, a, b, <chebSing1> , nDegree)

z = integrate(fct, a, b, <chebSing2> , nDegree)

z = integrate(fct, <hermite> , nDegree)

z = integrate(fct, <laguerre> , nDegree)

z = integrate(fct, <logSing> , nOrder)

Creates the polynomial object that represents the indefinite integral of a polynomial.
zPoly = integrate(yPoly)

Integrates a polynomial over a specified interval.
z = integrate(yPoly, a, b)

Computes the integral of a waveform.
w = integrate(v, h, vInit, vFinal)

Parameters

Name Type Description

x Real Vector A vector containing the independent data.

y Real Vector A vector containing the dependent data.

Chapter 7 Function Reference — integrate

© National Instruments Corporation 7-199 HiQ Reference Manual

idAlg HiQ Constant The data integration algorithm to use.
(Optional. Default = <parabolic>)

<spline>
<parabolic>

a Real Scalar The lower limit of the integral.

b Real Scalar The upper limit of the integral.

fct Function The integrand.

ifAlg HiQ Constant The function integration algorithm to use.
(Optional. Default = <adSimpson>)

<adSimpson>
<gauss>
<simpson>
<trapezoid>

nDiv Integer Scalar The number of divisions to use over the
interval. (Optional.)

tolr Real Scalar The solution tolerance. (Optional.
Default =<epsilon>)

nOrder Integer Scalar The order of the Gauss integration method.
(Optional. Default = 2)

nDegree Integer Scalar The degree of the polynomial to use.
(Optional.)

yPoly Polynomial The input polynomial.

v Real Vector An n-element vector representing a signal.

h Real Scalar The step size to use.

vInit Real Scalar The value represented by v [0].

vFinal Real Scalar The value represented by v [n+1].

z Real Scalar The value of the numeric integration.

zPoly Polynomial A polynomial object representing the indefinite
integral of the input polynomial.

w Real Vector An n-element vector representing the integral
of the input signal.

Name Type Description

Chapter 7 Function Reference — integrate

HiQ Reference Manual 7-200 © National Instruments Corporation

Comments
For data sets, HiQ returns the integral of the interpolated data set using natural cubic spline
interpolation or quadratic polynomial interpolation.

For functions, HiQ uses the extended (composite) Simpson’s method, adaptive Simpson’s
method, modified trapezoidal method, or Gauss’s formula.

The integral of a function f with respect to a weighting function w is defined as

HiQ uses Gauss’s formula to compute the following weighted integrals.

See Also
derivative

Integral HiQ Constant Comments

<chebSing1> The roots of the Chebyshev polynomial of
the first kind of degree nDegree are used
in Gauss’s formula.

<chebSing2> The roots of the Chebyshev polynomial of
the second kind of degree nDegree are
used in Gauss’s formula.

w x()f x() xd

a

b

∫

f x()
x a–() b x–()

------------------------------------- xd

a

b

∫

x a–() b x–()f x() xd

a

b

∫

Chapter 7 Function Reference — interp

© National Instruments Corporation 7-201 HiQ Reference Manual

interp

Purpose
Computes the interpolation of a data set.

Usage
Generates the piecewise linear or piecewise polynomial interpolation.

[coefs, intervals] = interp(x, y, <linear>)

[coefs, intervals] = interp(x, y, <poly>)

Generates the Hermite or Lagrange polynomial interpolation.
p = interp(x, y, <hermite>)

p = interp(x, y, <lagrange>)

Generates the rational polynomial interpolation.
[pNum, pDen] = interp(x, y, <rational>)

Parameters

Name Type Description

x Real Vector The n-element vector of independent data
points.

y Real Vector The n-element vector of dependent data points.

pnum Polynomial The numerator polynomial for the rational
interpolation.

pDen Polynomial The denominator polynomial for the rational
interpolation.

coefs Matrix The matrix of coefficients for each linear or
polynomial interpolant.

intervals Matrix The domains for each linear or polynomial
interpolant.

p Polynomial The Hermite or Lagrange polynomial
interpolation.

Chapter 7 Function Reference — interp

HiQ Reference Manual 7-202 © National Instruments Corporation

Comments
This function creates an interpolating polynomial of degree for an n-element data set
using Newton’s divided-differences formula and evaluates this polynomial at the given data
set x. The Hermite and Lagrange interpolating polynomials might have difficulties with large
data sets due to the high degree of the polynomial.

Lagrange interpolation requires the values in the x data set to be distinct. The Lagrange
polynomial interpolant p of data sets x and y is defined as

 where

Hermite interpolation allows repeated values in x. When a value is repeated, the
corresponding value in the y data set determines the value of a derivative at that point.
For example, the Hermite interpolation v of the x and y data sets

result in the following values evaluated at x.

with

n 1–

p x() yi Li x()
i 0=

n

∑= Li x()
x xj–

xi xj–

j 0=
j i≠

n

∏=

x 1 2 3 3 3 4 5, , , , , ,{ }=

y 9 7 5 1 0.5 7 9, , , , , ,{ }=

v x() 9 7 5 7 9, , , ,{ }=

dv
dx

x 3=

1=

d
2
v

dx
2

x 3=

0.5=

Chapter 7 Function Reference — interp

© National Instruments Corporation 7-203 HiQ Reference Manual

Rational interpolation is useful when your data exhibits the characteristics of a singularity.
A rational function is represented by the ratio of two polynomials.

For rational interpolation of an n-element data set, HiQ uses polynomial degrees for p and q
of and if n is even and if n is odd. The zeros of the
denominator polynomial model the singularity in the data set. If your data set does not exhibit
any singular behavior, Lagrange polynomial interpolation might be a better choice.

See Also
fit , spline , interpEval , spline , splineEval

r x() p x()
q x()
----------=

n 2⁄ n 2⁄ n 1+() 2⁄ n 1–() 2⁄

Chapter 7 Function Reference — interpEval

HiQ Reference Manual 7-204 © National Instruments Corporation

interpEval

Purpose
Evaluates an interpolation at the given points.

Usage
Evaluates the rational polynomial interpolation.

y = interpEval(x, <rational>, pNum, pDen)

Evaluates the linear or polynomial interpolation.
y = interpEval(x, <linear>, coefs, intervals)

y = interpEval(x, <poly>, coefs, intervals)

Evaluates the Hermite or Lagrange polynomial interpolation.
y = interpEval(x, <hermite>, p)

y = interpEval(x, <lagrange>, p)

Parameters

Name Type Description

x Real Vector The vector of values to evaluate the
interpolation.

coefs Matrix The coefficients of the interpolants defining the
interpolation.

intervals Matrix The intervals for each interpolant defined in the
interpolation.

p Polynomial The polynomial representing the interpolation.

pNum Polynomial The numerator for the rational polynomial
interpolation.

pDen Polynomial The denominator for the rational polynomial
interpolation.

y Vector The interpolation evaluated at the given points.

Chapter 7 Function Reference — interpEval

© National Instruments Corporation 7-205 HiQ Reference Manual

Comments
When evaluating piecewise polynomial interpolants, domain values outside the original
domain of the interpolant model produce NaN results when applied to the model. To extend
the interpolant, use the following usage of the built-in function createPoly .

firstPoly = createPoly(coefs[*,1], <ascending>);

lastPoly = createPoly(coefs[*,coefs.cols], <ascending>);

Use these polynomials to evaluate domain values below and above the original domain values.
Remember that this is practical only for values that are still relatively close to the original
domain. For an example of using this approach, see the comments for splineEval .

See Also
fit , fitEval , interpEval , spline , splineEval

Chapter 7 Function Reference — inv

HiQ Reference Manual 7-206 © National Instruments Corporation

inv

Purpose
Computes the inverse of a matrix, polynomial, or permutation.

Usage
Computes the inverse of a matrix.

B = inv(A)

Computes the inverse of a polynomial.
q = inv(p , maxDegree)

Computes the inverse of a permutation vector.
s = inv(r)

Parameters

Comments
The input matrix A must be square and non-singular. If it is numerically deficient an error is
generated. For matrices that are not square or are numerically singular, use pinv .

The inv function is equivalent to the following syntax for matrices:

B = A^-1;

Name Type Description

r Integer Vector An n-element permutation vector.

A Matrix The square matrix to invert.

p Polynomial The polynomial to invert.

maxDegree Integer Scalar The maximum degree of the polynomial
inverse. (Optional. Default = 128)

s Integer Vector The inverse of the input permutation vector.

B Matrix The inverse of the input matrix.

q Polynomial The inverse of the input polynomial.

Chapter 7 Function Reference — inv

© National Instruments Corporation 7-207 HiQ Reference Manual

The accuracy of the computed inverse is closely related to the condition number of the input
matrix. Refer to the function solve for more information. Solving a linear system using the
inverse of a matrix is usually impractical. The functions LUD and solve are quicker and more
accurate. The computational requirements for calculating the inverse of a matrix are O(n3).

For polynomials, you can limit the maximum degree of the computed inverse with the
optional parameter maxDegree .

See Also
compose , det , LUD, permu , pinv

Chapter 7 Function Reference — iPart

HiQ Reference Manual 7-208 © National Instruments Corporation

iPart

Purpose
Computes the integer part (whole part) of a number.

Usage
y = iPart(x)

Parameters

Comments
The result retains the sign of the input. For example, the following script returns a value of –4
for y.

y = iPart(-4.82);

For vector and matrix objects, iPart(x) returns the integer part of the input on an
element-by-element basis.

See Also
fPart , toInteger

Name Type Description

x Scalar, Vector, or
Matrix

The input argument.

y Scalar, Vector, or
Matrix

The integer part of the input argument.

Chapter 7 Function Reference — isEOF

© National Instruments Corporation 7-209 HiQ Reference Manual

isEOF

Purpose
Checks whether the file pointer is at the end of a file.

Usage
y = isEOF(fid)

Parameters

Comments
You can use this function to stop reading a file when the end-of-file is reached.

while not isEOF(fid) do

text = readLine(fid,1);

end while;

See Also
close , getFilePos , open

Name Type Description

fid Integer Scalar A valid file ID.

y Integer Scalar true (1): The file pointer is at the end of file.

false (0): The file pointer is not at the end
of file.

Chapter 7 Function Reference — isMatrix

HiQ Reference Manual 7-210 © National Instruments Corporation

isMatrix

Purpose
Queries the attributes of a matrix object.

Usage
y = isMatrix(a, attrib , tolr)

Parameters

Name Type Description

a Matrix The input matrix.

attrib HiQ Constant The matrix attribute to check.

<allZero>
<GT>
<GE>
<LT>
<LE>
<square>
<symmetric>
<lowerTri>
<upperTri>
<diagonal>
<posDef>
<negDef>
<rowDiagdom>
<colDiagDom>
<orthogonal>
<allReal>
<hermitian>
<unitary>

tolr Scalar A tolerance parameter required by some
attributes. (Optional. Default = 0.0)

y Integer Scalar true (1) Matrix satisfies the attribute.

false (0) Matrix does not satisfy the attribute.

Chapter 7 Function Reference — isMatrix

© National Instruments Corporation 7-211 HiQ Reference Manual

Comments
HiQ computes the properties of a matrix as defined in the following table.

HiQ Constant Properties

<allZero>

<GT>

<GE>

<LT>

<LE>

<square>

<diagonal> if

<symmetric>

<lowerTri> if

<upperTri> if

<posDef> and

<negDef> and

<rowDiagDom>

<colDiagDom>

<ortho>

aij tolr<

aij tolr>

aij tolr≥

aij tolr<

aij tolr≤

i j=

aij tolr≤ i j≠

aij aji– tolr≤

aij tolr≤ i j<

aij tolr≤ i j>

aij aji– tolr≤ λi tolrλmax≥

aij aji– tolr≤ λ i t– olrλmax≤

aii aij∑() trace A()– tolr+≥

ajj aij∑() trace A()– tolr+≥

a
i * a

j *,〈 〉 tolr≤

Chapter 7 Function Reference — isMatrix

HiQ Reference Manual 7-212 © National Instruments Corporation

This function evaluates the structure of the matrix, not the physical storage type. To determine
the storage type of a matrix, use the storage attribute as follows.

storage = A.storage;

The valid matrix storage types are <rect> , <band> , <upperTri> , <lowerTri> ,
<symmetric> , and <hermitian> .

See Also
createMatrix , sparsity

<hermitian>

<unitary>

HiQ Constant Properties

aij aji– tolr≤

a
i * a

j *,〈 〉 tolr≤

Chapter 7 Function Reference — jacobian

© National Instruments Corporation 7-213 HiQ Reference Manual

jacobian

Purpose
Computes the Jacobian of a function.

Usage
y = jacobian(fct, x , h, method)

Parameters

Comments
Given a vector-valued function of several variables

the Jacobian matrix A of the function f is defined as

Name Type Description

fct Function The input function.

x Real Vector The point at which to calculate the jacobian.

h Real Scalar The step size to use. (Optional.)

method HiQ Constant The finite difference method to use. (Optional.
Default = <central>)

<central>
<forward>

y Real Matrix The Jacobian matrix of the function.

y1

 ...
yn

f1 x1 … xn, ,()
 ...

fn x1 … xn, ,()

f x()= =

∂f1

∂x1

-------- …
∂f1

∂xn

 ...
. . .

∂fn

∂x1

∂fn

∂xn

Chapter 7 Function Reference — jacobian

HiQ Reference Manual 7-214 © National Instruments Corporation

If the step size is equal to zero, HiQ chooses an appropriate step size based on the precision
of your computer.

The forward and central finite difference formulas result in finite difference approximations
of order one, two, and four respectively.

See Also
derivative , hessian , partial

Chapter 7 Function Reference — kelvinI

© National Instruments Corporation 7-215 HiQ Reference Manual

kelvinI

Purpose
Computes the complex Kelvin function of the first kind.

Usage
be = kelvinI(x, n)

Parameters

Comments
The complex-valued Kelvin function of the first kind of order ν is a solution of the
complex-valued differential equation

The real and imaginary parts of the Kelvin function of the first kind of order ν are solutions
of the differential equation

HiQ supports the real domain ().

See Also
besselJ , besselK , kelvinK

Name Type Description

x Real Scalar The input argument.

n Integer Scalar The value of the Bessel order.

be Complex Scalar The value of the Kelvin function of the first
kind. Complex pair (ber ,bei).

x
2 d

2
w

dx
2

--------- xdw
dx
------- ix

2
v

2–()w–+ 0=

x
4 d

4
w

dx
4

--------- 2x
3 d

3
w

dx
3

--------- 1 2v
2+() x

2 d
2
w

dx
2

--------- xdw
dx
-------–

– v
4 4v

2– x
4+()w+ + 0=

∞– ∞,

Chapter 7 Function Reference — kelvinK

HiQ Reference Manual 7-216 © National Instruments Corporation

kelvinK

Purpose
Computes the complex Kelvin function of the second kind.

Usage
ke = kelvinK(x, n)

Parameters

Comments
The complex-valued Kelvin function of the second kind of order ν is a solution of the
complex-valued differential equation

The real and imaginary parts of the Kelvin function of the first kind of order ν are solutions
of the differential equation

HiQ supports the real domain ().

See Also
besselJ , besselK , kelvinI

Name Type Description

x Real Scalar The input argument.

n Integer Scalar The value of the Bessel order.

ke Complex Scalar The value of the Kelvin function of the second
kind. Complex pair (ker ,kei).

x
2 d

2
w

dx
2

--------- xdw
dx
------- ix

2
v

2–()w–+ 0=

x
4 d

4
w

dx
4

--------- 2x
3d

3
w

dx
3

--------- 1 2v
2+() x

2d
2
w

dx
2

--------- xdw
dx
-------–

– v
4 4v

2– x
4+()w+ + 0=

∞– ∞,

Chapter 7 Function Reference — kummer

© National Instruments Corporation 7-217 HiQ Reference Manual

kummer

Purpose
Computes the Kummer function (confluent hypergeometric function).

Usage
y = kummer(x, a, b)

Parameters

Comments
The Kummer function (confluent hypergeometric function), M(x,a,b), is a solution of the
differential equation

See Also
gauss , tricomi

Name Type Description

x Real Scalar The input argument.

a Real Scalar The first parameter of the Kummer function.

b Real Scalar The second parameter of the Kummer function.

y Real Scalar The value of the Kummer function.

xd
2
w

dx
2

--------- b x–()dw
dx
------- aw–+ 0=

Chapter 7 Function Reference — kurtosis

HiQ Reference Manual 7-218 © National Instruments Corporation

kurtosis

Purpose
Computes the kurtosis of a data sample.

Usage
y = kurtosis(x , xMean)

Parameters

Comments
The kurtosis of an n-element data set x is defined as

See Also
mean, moment, skew

Name Type Description

x Real Vector The input data set.

xMean Real Scalar The mean of the input data set. (Optional.)

y Real Scalar The kurtosis of the input data set.

1

σ4

xi x–()4

i 1=

n

∑
n

Chapter 7 Function Reference — laplacian

© National Instruments Corporation 7-219 HiQ Reference Manual

laplacian

Purpose
Computes the Laplacian of a function.

Usage
y = laplacian(fct, x , h, method)

Parameters

Comments
Given a scalar-valued function of several variables

the Laplacian of the function f is defined as

If the step size is equal to zero, HiQ chooses an appropriate step size based on the precision
of your computer.

The forward and central finite difference formulas result in finite difference approximations
of order one, two, and four respectively.

See Also
derivative , gradient

Name Type Description

fct Function The input function.

x Real Vector The point at which to calculate the laplacian.

h Real Scalar The step size to use. (Optional.)

method HiQ Constant The finite difference method to use. (Optional.
Default = <central>)

<central>
<forward>

y Real Scalar The Laplacian of the input function.

y f x1 … xn, ,()=

∇2
f ∂2

f

∂xi
2

i 1=

n

∑=

Chapter 7 Function Reference — lcm

HiQ Reference Manual 7-220 © National Instruments Corporation

lcm

Purpose
Computes the least common multiple of a set of integers.

Usage
Computes the least common multiple of two integers.

y = lcm(a, b)

Computes the least common multiple of a set of integers.
y = lcm(x)

Parameters

Comments
The least common multiple of a set of integers is defined as the smallest integer that is a
multiple of all integers in the set.

See Also
gcd

Name Type Description

a Integer Scalar The first input argument.

b Integer Scalar The second input argument.

x Integer Vector A set of integer arguments.

y Integer Scalar The least common multiple of the input.

Chapter 7 Function Reference — ln

© National Instruments Corporation 7-221 HiQ Reference Manual

ln

Purpose
Computes the natural logarithm of a number (logarithm to the base e).

Usage
y = ln(x)

Parameters

Comments
The natural logarithm is defined for the real domain ().

See Also
exp , log

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The natural logarithm of the input.

0 ∞,

Chapter 7 Function Reference — log

HiQ Reference Manual 7-222 © National Instruments Corporation

log

Purpose
Computes the logarithm of a number to a given base.

Usage
y = log(x , b)

Parameters

Comments
Because the base b logarithm of a complex number is not single-valued, this function
computes the result for the input parameter x in the principal branch of the complex plane.
That is, the polar representation for any is taken as

 where

The logarithm is defined for the real domain () and .

See Also
exp , ln

Name Type Description

x Real or Complex
Scalar

The input argument.

b Integer Scalar The desired base of the logarithm. (Optional.
Default = 10)

y Real or Complex
Scalar

The logarithm of the input.

x 0>

x x e
iθ= π– θ π< <

0 ∞, b 0>

Chapter 7 Function Reference — logMessage

© National Instruments Corporation 7-223 HiQ Reference Manual

logMessage

Purpose
Displays a message in the Log Window.

Usage
logMessage(text, appendOption)

Parameters

Comments
Unlike message , logMessage does not display a dialog box. All messages are displayed in
the Log Window. This allows a script to continue executing while displaying messages.

See Also
clearLog , error , message , saveLog , warning

Name Type Description

text Text The message to display.

appendOption HiQ Constant Specifies whether to append the text to the log
contents or create a new line. (Optional.
Default = <newLine>)

<newLine>
<append>

Chapter 7 Function Reference — LUD

HiQ Reference Manual 7-224 © National Instruments Corporation

LUD

Purpose
Computes the LU decomposition of a matrix.

Usage
[L, U, pivot] = LUD(A)

Parameters

Comments
The LU decomposition of a square matrix A is the factorization

where L is an lower triangular matrix with ones along the main diagonal, and U is an
 upper triangular matrix. This function uses row pivoting to ensure numerical stability

with the output vector pivot containing the pivoting information. Thus the resulting LU
decomposition is for the transformed matrix PA rather than A, where P is a permutation
matrix. This permutation information is returned as a pivot vector in pivot . The following
code shows how to generate the matrix PA:

[L, U, pivot] = LUD(A);

P = permu(pivot);

PA = permu(P, A);

LU = L*U;

By definition of the LU decomposition, the matrices PA and LU are identical.

Name Type Description

A Matrix The square nxn input matrix.

L Matrix The lower triangular matrix.

U Matrix The upper triangular matrix

pivot Integer Vector A vector containing the row pivoting
information.

n n×

A LU=

n n×
n n×

Chapter 7 Function Reference — LUD

© National Instruments Corporation 7-225 HiQ Reference Manual

The LU decomposition of a matrix is an essential step in solving a linear system. The output
of this function should be used as the input to the function solve to solve a linear system as
in the following script.

x = solve(L, U, b, pivot);

For a matrix with no structural properties, a modified Crout’s algorithm with implicit scaling
is used.

For symmetric (Hermitian), indefinite matrices, use the function symD to perform the
tri-diagonal factorization LTL T.

For symmetric (Hermitian), positive definite matrices, use the function choleskyD to
perform the Cholesky decomposition LL T. No row pivoting is required.

For an input matrix with band structure, the output matrix is band structure with bandwidths
 where m1 and n1 are the lower and upper bandwidths of the input matrix,

respectively.

See Also
choleskyD , hessenbergD , QRD, schurD , solve , SVD, symD, permu

m1 n1 m1+()

Chapter 7 Function Reference — max

HiQ Reference Manual 7-226 © National Instruments Corporation

max

Purpose
Computes the maximum value of a data set.

Usage
Finds the maximum value of two numbers.

y = max(a, b)

Finds the maximum value of a vector.
[y, i] = max(c)

Finds the maximum value of a matrix.
[y, i, j] = max(C)

Parameters

Comments
If the maximum occurs in more than one element of a vector or matrix, HiQ returns the indices
of the first maximum found. For matrices, HiQ searches on a row-by-row basis. NaNs affect
the results. Use replace() to remove them if necessary.

See Also
min

Name Type Description

a Scalar The first input argument.

b Scalar The second input argument.

c Vector The vector of input data.

C Matrix The matrix of input data.

y Scalar The maximum value of the input data.

i Integer Scalar The matrix row or vector element index of
the maximum value.

j Integer Scalar The matrix column index of the maximum
value.

Chapter 7 Function Reference — mean

© National Instruments Corporation 7-227 HiQ Reference Manual

mean

Purpose
Computes the arithmetic mean (average) of a data sample.

Usage
y = mean(x)

Parameters

Comments
The mean (average) of an n-element data set x is defined as

See Also
median , stdDev

Name Type Description

x Real Vector The input data set.

y Real Scalar The mean value of the input data set.

xi

i 1=

n

∑
n

Chapter 7 Function Reference — median

HiQ Reference Manual 7-228 © National Instruments Corporation

median

Purpose
Computes the median of a data sample.

Usage
y = median(x)

Parameters

Comments
The median of an n-element data set x is defined as

See Also
histogram , mean, quartile , range

Name Type Description

x Real Vector The input data set.

y Real Scalar The median value of the input data set.

xn 1+
2

 if n is odd

xn
2

xn
2
--- 1+

+

2
----------------------- if n is even

Chapter 7 Function Reference — message

© National Instruments Corporation 7-229 HiQ Reference Manual

message

Purpose
Displays a message dialog box.

Usage
message(text)

Parameters

Comments
The message function displays a message dialog box containing the input text. The script
continues execution if the user clicks on the OK button. Use the <Escape> key to stop
execution of the script while the message dialog box is displayed. This is useful if you get
into a situation where message is called inside a For Loop with many iterations.

See Also
error , warning

Name Type Description

text Text Message to display in the dialog box.

Chapter 7 Function Reference — min

HiQ Reference Manual 7-230 © National Instruments Corporation

min

Purpose
Computes the minimum value of a data set.

Usage
Finds the minimum value of two numbers.

y = min(a, b)

Finds the minimum value of a vector.
[y, i] = min(c)

Finds the minimum value of a matrix.
[y, i, j] = min(C)

Parameters

Comments
If the minimum occurs in more than one element of a vector or matrix, HiQ returns the indices
of the first minimum found. For matrices, HiQ searches on a row-by-row basis. NaNs do
affect the results. Use replace() to remove them if necessary.

See Also
max

Name Type Description

a Integer or Real
Scalar

The first input argument.

b Integer or Real
Scalar

The second input argument.

v Integer or Real
Vector

The vector of input data.

C Integer or Real
Matrix

The matrix of input data.

y Scalar The minimum value of the input arguments.

i Integer Scalar The matrix row or vector element of the
minimum value.

j Integer Scalar The matrix column of the minimum value.

Chapter 7 Function Reference — moment

© National Instruments Corporation 7-231 HiQ Reference Manual

moment

Purpose
Computes the first moment of a data set.

Usage
y = moment(x , order, xMean)

Parameters

Comments
The first central moment, , of an n-element data sample x is defined as

See Also
kurtosis , mean, skew

Name Type Description

x Real Vector The input data set.

order Integer Scalar The order of the moment to calculate.
(Optional. Default = 1)

xMean Real Scalar The mean of the input data set. (Optional.)

y Real Scalar The calculated moment of the input data set.

µ1

xi x–()
i 1=

n

∑
n

Chapter 7 Function Reference — norm

HiQ Reference Manual 7-232 © National Instruments Corporation

norm

Purpose
Computes the norm of a vector or matrix.

Usage
Computes the norm of a vector.

x = norm(a , vType)

Computes the norm of a matrix.
x = norm(A , mType)

Computes the weighted Euclidean norm of a vector.
x = norm(a, <Lw>, w)

Computes the p-norm of a vector.
x = norm(a, <Lp>, p)

Parameters

Name Type Description

a Vector The input vector.

vType HiQ Constant Type of vector norm to be calculated.
(Optional. Default = <L2>)

<L1>
<L2>
<Lp>
<Lw>

w Vector An n-element vector of weights. Use only
when vType = <Lw>.

p Scalar p-norm parameter. Use only when
vType = <Lp>. (Must be greater than 0,
Default = 2.)

A Matrix The input matrix.

Chapter 7 Function Reference — norm

© National Instruments Corporation 7-233 HiQ Reference Manual

Comments
A norm of a vector a in a vector space is an important nonnegative real function that is
the generalization of the concept of length. A norm satisfies three axioms:

, for all a and if and only if

 where c is scalar

This function implements the following n-dimensional vector space norms:

mType HiQ Constant Type of matrix norm to be calculated.
(Optional. Default = <L2>)

<L2>
<L2sq>
<frob>
<L1>

x Real Scalar The norm of the input.

L1:

L2 (Euclidean):

L22:

Li:

Lp:

Weighted L2:

Name Type Description

a

a 0≥ a 0= a 0=

ca c a=

a b+ a b+≤

a 1 ai
i

∑=

a 2 ai
2

i
∑

1
2

=

a 2 ai
2

i
∑=

a ∞ max
i

ai=

a p ai
p

i
∑

1
p

=

a 2 wi ai
2

i
∑

1
2

=

Chapter 7 Function Reference — norm

HiQ Reference Manual 7-234 © National Instruments Corporation

This concept also applies to matrices because a matrix can be considered a vector in an
vector space. This leads to the Frobenius norm:

Finally, the norm concept can be applied to linear matrix operators that map an n-dimensional
vector space into an m-dimensional vector space. The norm of a linear operator A is
defined as:

where x is an n-dimensional vector and Ax is an m-dimensional vector. The vector norm used
on the right-hand side of this equation dictates the resulting matrix norm. The function norm
implements the following matrix operator norms:

See Also
cond , dist

L1:

L2 (Euclidean):

Li:

m n×

A F aij
2

i j
∑

1
2

=

A

A sup Ax
x 1=

≡

A 1 max aij
i

∑

j
=

A 2 λmax A * A⋅()()
1
2

=

A ∞ max aij

j
∑

i

=

Chapter 7 Function Reference — ODEBVP

© National Instruments Corporation 7-235 HiQ Reference Manual

ODEBVP

Purpose
Solves a set of ordinary differential equations given boundary conditions.

Usage
Solves a set of nonlinear differential equations given boundary conditions.

[tOut, X] = ODEBVP(nonlinFct, guessFct, BCFct, start, stop,

stepSize , IVPAlg, absTolr, relTolr, maxIter, BCType, maxShoot,

outStep, thresh)

[tOut, X] = ODEBVP(nonlinFct, guessFct, BCFct, tIn , IVPAlg,

absTolr, relTolr, maxIter, BCType, maxShoot, thresh)

Solves a set of linear differential equations given linear boundary conditions.
[tOut, X] = ODEBVP(linBVPFct, RHSFct, BStart, BStop, BRHS, start,

stop, stepSize , IVPAlg, absTolr, relTolr, shootAlg, maxShoot,

outStep, thresh)

[tOut, X] = ODEBVP(linBVPFct, RHSFct, BStart, BStop, BRHS, tIn ,

IVPAlg, absTolr, relTolr, shootAlg, maxShoot, thresh)

Parameters

Name Type Description

nonlinFct Function The input function of n nonlinear differential
equations.

guessFct Function The solution guess as a function of the
independent variable.

BCFct Function The function of n boundary conditions.

start Real Scalar The starting value of the independent variable.

stop Real Scalar The ending value of the independent variable.

stepSize Real Scalar The step size to use for the solution matrix.

Chapter 7 Function Reference — ODEBVP

HiQ Reference Manual 7-236 © National Instruments Corporation

IVPAlg HiQ Constant The initial value problem algorithm to use.
(Optional. Default = <RKF>)

<RKF>
<BDF>
<BDF1>
<ABM>
<cc>
<BS>

absTolr Real Scalar The absolute tolerance to use for the solution
matrix. (Optional. Default = .0001)

relTolr Real Scalar The relative tolerance to use for the solution
matrix. (Optional. Default = .0001)

maxIter Integer Scalar The maximum number of iterations to perform.
(Optional. Default = 128)

BCType HiQ Constant Specifies the type of boundary conditions.
(Optional. Default = <nonlinear >)

<linear>
<nonlinear>

maxShoot Real Scalar The maximum shooting interval to use.
(Optional. Default = 0.0)

outStep HiQ Constant Determines the spacing of the solution matrix.
(Optional. Default = <fixed >)

<variable>
<fixed>

thresh Real Scalar Value added to solution before checking
relative tolerance. (Optional. Default = .25)

tIn Real Vector A vector of independent values at which to
compute the solution.

linBVPFct Function The input function of n linear differential
equations.

RHSFct Function The forcing function of the linear differential
equations.

BStart Real Matrix The linear boundary conditions at the starting
point.

Name Type Description

Chapter 7 Function Reference — ODEBVP

© National Instruments Corporation 7-237 HiQ Reference Manual

Comments
An equation that is a function of an independent variable x and a dependent variable y and its
derivatives with respect to x is called a differential equation. The order of a differential
equation is equal to the order of the highest derivative in the equation. For example,

is a first-order differential equation, and

is a second-order differential equation. Differential equations like those above that are a
function of a single independent variable are called ordinary differential equations.

A system of n first-order differential equations can be represented by the following equation.

BStop Real Matrix The linear boundary conditions at the stopping
point.

BRHS Real Vector The right side of the linear boundary
conditions.

shootAlg HiQ Constant The shooting algorithm to use. (Optional.
Default = <marching >)

<simple>
<marching>

tOut Real Vector The independent vector of solution values.

X Real Matrix The matrix of solution values.

Name Type Description

dy
dx
------ 2xy2=

x
2 d

2
y

dx
2

-------- xdy
dx
------ x

2
p

2–()y+ + 0=

dy x()
dx

dy1 x()
dx

---------------- f1 x y,()=

dy2 x()
dx

---------------- f2 x y,()=

...
dyn x()

dx
---------------- fn x y,()=

=

Chapter 7 Function Reference — ODEBVP

HiQ Reference Manual 7-238 © National Instruments Corporation

A unique solution to this set of differential equations over an interval requires a
set of initial conditions or a set of boundary conditions on the dependent variable y. The
boundary-value problem computes a solution given a set of boundary conditions

If the differential equations and boundary conditions are linear in y, the boundary value
problem reduces to the following equations.

The function ODEBVP computes the solution y(x) to a set of first-order ordinary differential
equations for a range of values of the dependent variable given the boundary conditions
imposed on the independent variable y.

For the linear and non-linear boundary value problem, HiQ uses a multi-step shooting
method that reduces the problem to an algebraic nonlinear system and iteratively solves an
initial-value problem. The parameter maxShoot specifies the maximum shooting interval to
use. A small shooting interval results in a better conditioned nonlinear system, but increases
the dimension of the system. The following values are recommended for the shooting interval.

 where

For the non-linear boundary value problem, a value of <linear> for the parameter BCType
allows HiQ to take advantage of boundary conditions that are linear in y. For the linear
boundary value problem, a value of <marching> for the parameter shootAlg allows HiQ to
reduce the dimension of the algebraic system using QR decomposition. This can reduce the
amount of time required to compute the solution.

The following algorithms for solving the initial value problem are available in HiQ.

Algorithm Description

Runge-Kutta-Fehlberg Fehlberg’s version of the Runge-Kutta algorithm. Uses
fourth- and fifth-order formulas to estimate the solution
error and is a good general method for well-behaved
differential equations.

x0 x xf≤ ≤

h y x0() y xf(),() 0=

dy x()
dx

-------------- A x()y q x()+=

x0 x xf≤ ≤

B0y x0() B0y xf()+ b=

L L
2
--- L

4
--- … L

32
------, , , , L xf x0–=

Chapter 7 Function Reference — ODEBVP

© National Instruments Corporation 7-239 HiQ Reference Manual

The columns of the solution matrix, X , contain the solutions of the n differential
equations at the values contained in the m-element vector tOut . If you specify <variable>
for the parameter outStep , the solution matrix contains the solutions at values chosen by the
selected algorithm. In this case, the parameter stepSize specifies the maximum step size
used by the algorithm. If you provide a vector of values tIn for the independent variable, the
solution is computed at each of these values and tOut is equal to tIn . If an algorithm
encounters numerical problems, HiQ returns a partial vector of solutions.

The solution yi at each value of the independent variable satisfies the following absolute
tolerance and relative tolerance requirements.

The denominator contains a small, non-zero value to prevent division by zero. The parameters
absTolr , relTolr , and thresh correspond to , , and respectively.

See Also
ODEIVP

Adams-Bashforth-Moulton Multistep method using an Adams-Bashforth predictor and
an Adams-Moulton corrector. This method requires fewer
function evaluations than the Runge-Kutta- Fehlberg
method and therefore is useful when the evaluation of the
differential equations is time-consuming.

Bulirsch-Stoer Extrapolation method using the Aitken-Neville triangle
rule. This method performs well for small absolute and
relative error tolerances.

Backward differentiation
formula

Multistep, variable order method using orders up to six.
This method is designed for stiff sets of equations. It is also
known as Gear’s method.

Cyclic composite Multistep, variable order method. This method is designed
for stiff sets of equations.

Algorithm Description

m n×

εa εr

y i yi 1–– 2 εa<

yi y i 1–– 2

y i 2 δ+
---------------------------- εr<

εa εr δ

Chapter 7 Function Reference — ODEIVP

HiQ Reference Manual 7-240 © National Instruments Corporation

ODEIVP

Purpose
Solves a set of ordinary differential equations given initial conditions.

Usage
Solves a set of nonlinear differential equations.

[tOut, X] = ODEIVP(fct, x0, start, stop, stepSize, IVPAlg, absTolr,

relTolr, out Step, callback)

[tOut, X] = ODEIVP(fct, x0, tIn , IVPAlg, absTolr, relTolr,

callback)

Parameters

Name Type Description

fct Function The function defining the set of n first order
differential equations.

x0 Real Vector The initial conditions.

start Real Scalar The starting value of the independent variable.

stop Real Scalar The stopping value of the independent
variable.

stepSize Real Scalar The step size to use.

IVPAlg HiQ Constant The ODE solver method to use. (Optional.
Default = <RKF>)

<RKF>—Runge-Kutta-Fehlberg
<cc > —cyclic composite
<ABM>—Adams-Bashforth-Moulton
<BDF>—backward differentiation formula
<BS>—Bulirsch-Stoer

Chapter 7 Function Reference — ODEIVP

© National Instruments Corporation 7-241 HiQ Reference Manual

Comments
An equation that is a function of an independent variable x and a dependent variable y and its
derivatives with respect to x is called a differential equation. The order of a differential
equation is equal to the order of the highest derivative in the equation. For example,

is a first-order differential equation, and

is a second-order differential equation. Differential equations like those above that are a
function of a single independent variable are called ordinary differential equations.

absTolr Real Scalar The absolute tolerance to use for the solution
matrix. (Optional. Default = .0001)

relTolr Real Scalar The relative tolerance to use for the solution
matrix. (Optional. Default = .0001)

outStep HiQ Constant Determines the spacing of the solution matrix.
(Optional. Default = <fixed>)

<fixed>
<variable>

callback Function A user function called after each iteration with
the current value of the independent variable
and solution. (Optional.)

tIn Real Vector A vector of values at which to compute the
solution.

tOut Real Vector The vector of independent solution values.

X Real Matrix The n-column matrix whose columns contain
the solution to the n differential equations.

Name Type Description

dy
dx
------ 2xy

2=

x
2 d

2
y

dx
2

-------- xdy
dx
------ x

2
p

2–()y+ + 0=

Chapter 7 Function Reference — ODEIVP

HiQ Reference Manual 7-242 © National Instruments Corporation

A system of n first-order differential equations can be represented by the following equation.

A unique solution to this set of differential equations over an interval

requires a set of initial conditions or a set of boundary conditions on the dependent variable
y. The initial-value problem computes a solution given a set of initial conditions

The function ODEIVP computes the solution y(x) to a set of first-order ordinary differential
equations for a range of values of the dependent variable given the initial conditions y0.
The following algorithms for solving the initial value problem are available in HiQ.

Algorithm Description

Runge-Kutta-Fehlberg Fehlberg’s version of the Runge-Kutta algorithm. Uses
fourth- and fifth-order formulas to estimate the solution
error and is a good general method for well-behaved
differential equations.

Adams-Bashforth-Moulton Multistep method using an Adams-Bashforth predictor and
an Adams-Moulton corrector. This method requires fewer
function evaluations than the Runge-Kutta- Fehlberg
method and therefore is useful when the evaluation of the
differential equations is time-consuming.

Bulirsch-Stoer Extrapolation method using the Aitken-Neville triangle
rule. This method performs well for small absolute and
relative error tolerances.

dy x()
dx

dy1 x()
dx

---------------- f1 x y,()=

dy2 x()
dx

---------------- f2 x y,()=

 ...
dyn x()

dx
---------------- fn x y,()=

=

x0 x xf≤ ≤

y x0() y0=

Chapter 7 Function Reference — ODEIVP

© National Instruments Corporation 7-243 HiQ Reference Manual

The columns of the solution matrix, X , contain the solutions of the n differential
equations at the values contained in the m-element vector tOut . If you specify <variable>
for the parameter outStep , the solution matrix contains the solutions at values chosen by the
selected algorithm. In this case, the parameter stepSize specifies the maximum step size
used by the algorithm. If you provide a vector of values tIn for the independent variable, the
solution is computed at each of these values and tOut is equal to tIn . If an algorithm
encounters numerical problems, HiQ returns a partial vector of solutions.

The solution yi at each value of the independent variable satisfies the following absolute
tolerance and relative tolerance requirements.

The denominator contains a small, non-zero value to prevent division by zero. The parameters
absTolr , relTolr , and thresh correspond to , , and respectively.

See Also
ODEBVP

Backward differentiation
formula

Multistep, variable order method using orders up to six.
This method is designed for stiff sets of equations. It is also
known as Gear’s method.

Cyclic composite Multistep, variable order method. This method is designed
for stiff sets of equations.

Algorithm Description

m n×

εa εr

y i yi 1–– 2 εa<

yi y i 1–– 2

y i 2 δ+
---------------------------- εr<

εa εr δ

Chapter 7 Function Reference — ones

HiQ Reference Manual 7-244 © National Instruments Corporation

ones

Purpose
Creates a vector or matrix with all elements set to one.

Usage
A = ones(m)

Creates an m-element vector with all elements set to one.

A = ones(m, n)

Creates an mxn matrix with all elements set to one.

Parameters

Comments
All elements of the vector or matrix are set to one.

See Also
createMatrix , createVector , fill

Name Type Description

m Integer Scalar Number of rows.

n Integer Scalar Number of columns.

A Integer Vector or
Matrix

The vector or matrix with elements initialized
to one.

Chapter 7 Function Reference — open

© National Instruments Corporation 7-245 HiQ Reference Manual

open

Purpose
Opens a file.

Usage
fid = open(fileName , access)

Parameters

Comments
If the parameter access is not specified, HiQ uses "r+" if the files exists and "w+" if the file
does not exist.

Name Type Description

fileName Text The path and file name to open.

access Text The file access mode. (Optional.)

"r"
"w"
"a"
"rb"
"wb"
"ab"
"r+"
"w+"
"a+"
"rb+"
"wb+"
"ab+"

fid Integer Scalar A file handle for the open file.

Mode Result

"r" Open an existing text file for reading.

"w" Create a text file or open and truncate an existing text file for writing.

"a" Create a text file or open an existing text file for writing. The file position
indicator is positioned at the end of the file before each write.

"rb" Open an existing binary file for reading.

"wb" Create a binary file or open and truncate an existing binary file for writing.

Chapter 7 Function Reference — open

HiQ Reference Manual 7-246 © National Instruments Corporation

Files are automatically closed when the script finishes execution.

See Also
close

"ab" Create a binary file or open an existing binary file for writing. The file
position indicator is positioned at the end of the file before each write.

"r+" Open an existing text file for reading and writing.

"w+" Create a text file or open and truncate an existing text file for reading and
writing.

"a+" Create a text file or open an existing text file for reading and writing. The file
position indicator is positioned at the end of the file before each write.

"rb+" Open an existing binary file for reading and writing.

"wb+" Create a binary file or open and truncate an existing binary file for reading
and writing.

"ab+" Create a binary file or open an existing binary file for reading and writing.
The file position indicator is positioned at the end of the file before each
write.

Mode Result

Chapter 7 Function Reference — optimize

© National Instruments Corporation 7-247 HiQ Reference Manual

optimize

Purpose
Finds the minimum value of a linear or nonlinear equation.

Usage
Computes the minimum value and minimizing vector of an unconstrained nonlinear function.

[fmin, xmin, nIter, kgTolr, kxTolr] = optimize(sFct, x0 , uType,

gTolr, xTolr, maxIter, grdSFct, callback)

[fmin, xmin, nIter, kjTolr, kxTolr] = optimize(mFct, x0,

<marquardt> , jTolr, xTolr, maxIter, jacMFct, callback)

Computes the minimum value and minimizing vector of a nonlinear function with nonlinear
constraints.

[fmin, xmin, nIter, kfTolr, kTolr] = optimize(sFct, x0, eqFct,

ineqFct , cType, tolr, maxIter, maxFctcalls, callback)

Computes the minimum value and minimizing vector of a linear system with linear
constraints.

[fmin, xmin] = optimize(f, A, b, iLT, iGT, iEQ)

Parameters

Name Type Description

sFct Function The objective function to minimize.

x0 Real Vector The initial guess for the minimizing vector.

uType HiQ Constant The unconstrained algorithm to use. (Optional.
Default = <conjGrad>)

<nelderMead>
<conjGrad>
<quasiNewton>

gTolr Real Scalar The tolerance of the gradient of the input
function to meet. (Optional. Default = .0001)

xTolr Real Scalar The tolerance of the solution vector to meet.
(Optional. Default = .0001)

maxIter Integer Scalar The maximum number of iterations to perform.
(Optional. Default = 32)

Chapter 7 Function Reference — optimize

HiQ Reference Manual 7-248 © National Instruments Corporation

grdSFct Function A function representing the gradient of the
input function sFct . (Optional.)

callback Function A function called at the end of each iteration.
(Optional.)

mFct Function The objective function to minimize.

jTolr Real Scalar The tolerance of the jacobian of the input
function to meet. (Optional. Default = .0001)

jacMFct Function A function representing the jacobian of the
input function mFct . (Optional.)

eqFct Function A function containing the equality (=)
constraints.

ineqFct Function A function containing the inequality (<>)
constraints.

cType HiQ Constant The unconstrained optimization algorithm to
use. (Optional. Default = <conjGrad>)

<quasiNewton>
<conjGrad>

tolr Real Scalar The tolerance on both the function value and
solution value. (Optional. Default = .0001)

maxFctcalls Integer Scalar The maximum number of function calls to
allow. (Optional. Default = 1024)

f Real Vector The coefficients of the linear objective
function.

A Real Matrix The coefficients of the less than and greater
than inequality constraints and the equality
constraints.

b Real Vector The right side constants of the constraint
equations.

iLT Integer Scalar The number of less than (<) inequality
constraints.

iGT Integer Scalar The number of greater than (>) inequality
constraints.

Name Type Description

Chapter 7 Function Reference — optimize

© National Instruments Corporation 7-249 HiQ Reference Manual

Comments
Optimization is an extremely useful tool for solving a diverse set of problems including
asset allocation, resource planning, parameter estimation, guidance and control, and
approximation. The function optimize finds the minimum of an unconstrained nonlinear
function or a constrained linear or nonlinear function.

The solution, , to the unconstrained optimization problem of a nonlinear single-valued
function (objective function or performance index) of several variables

is a local minimum of the function f.

The constrained optimization of the nonlinear function f adds the following constraints to the
unconstrained optimization problem.

A necessary condition for the solution of the optimization problem is that the gradient of the
function f at the solution must be zero.

iEQ Integer Scalar The number of equality (=) constraints.

fmin Real Scalar The minimum value of the function.

xmin Real Vector The minimizing vector.

nIter Integer Scalar The number of iterations performed.

kgTolr Integer Scalar true (1) if the gradient tolerance parameter
was met; false (0) if not.

kxTolr Integer Scalar true (1) if solution tolerance parameter was
met; false (0) if not.

kjTolr Integer Scalar true (1) if the jacobian tolerance parameter
was met; false (0) if not.

kTolr Integer Scalar true (1) if the tolerance parameter was met;
false (0) if not.

Name Type Description

x*

f x1 x2 … xn, , ,() f x()=

g x() 0=

h x() 0<

x*

∇f xi() 0=

Chapter 7 Function Reference — optimize

HiQ Reference Manual 7-250 © National Instruments Corporation

A sufficient condition for the solution of the optimization problem is that the Hessian of the
function f at the solution must be positive definite.

HiQ uses the quasi-Newton method, conjugate gradient method, or Nelder-Mead method to
find the solution to the unconstrained optimization problem defined above.

The quasi-Newton method derives from the necessary and sufficient conditions above to
generate the following iterative update to the solution.

 where

The initial inverse of the Hessian matrix H is computed using the Cholesky decomposition
and is updated using the Broyden-Fletcher-Goldfarb-Shano update method.

The conjugate gradient method is a direct iterative search using the gradient of f as the initial
value of the conjugate gradient p used in the following equation.

 where

The conjugate gradient p is updated numerically using one of the following methods.

HiQ uses the Polak-Ribiere update method as the default (<conjGrad>).

Polak–Ribiere
(<conjGradPR>)

Beale–Sorenson
(<conjGradBS>)

Polak–Ribiere
(<conjGradPR>)

x*

∂2
f x()

∂x2
--------------- 0>

x i 1+ xi λH 1– ∇xi
–= H ∂2f x()

∂x2
---------------=

x i 1+ x i λp i
–= p0 ∇f x()=

pi 1+ ∇ f x i 1+()– ∇ f x i 1+()
T

∇f xi 1+() ∇f x i()–()

∇f xi()
T
∇f xi()

--p i
+=

pi 1+ ∇ f x i 1+()– ∇ f x i 1+()
T

∇f xi 1+() ∇f x i()–()

pi T

∇f xi 1+() ∇f x i()–()
--p i

+=

p i 1+ ∇f xi 1+()– ∇f xi 1+()
T
∇fxi 1+

∇f xi()
T
∇f xi()

---p i
+=

∇f x i() εf<

xi xi 1–– εx<

Chapter 7 Function Reference — optimize

© National Instruments Corporation 7-251 HiQ Reference Manual

The Nelder-Mead method is a simplex search method that does not require the computation
of the gradient of f.

Unconstrained optimization of a nonlinear multi-valued function of several variables

is defined by the following equation.

HiQ uses the Levenberg-Marquardt method to compute the solution to the unconstrained
optimization of a nonlinear multi-valued function described above.

For the constrained optimization problem, the nonlinear constraints are adjoined to the
objective function f to create the unconstrained optimization problem

where and are the Lagrange multipliers. HiQ computes the solution to this
unconstrained optimization using the quasi-Newton method or the conjugate gradient
method. The nonlinear constraints are enforced only after the iterative solution of the
unconstrained optimization problem. Therefore, solutions of the unconstrained optimization
problem may violate the constraints. To prevent problems with constraint violation, you must
make sure the objective function is defined for values of x outside the constraints.

The constrained optimization problem of a linear function of n variables with n linear
constraints is defined by the following equations.

minimize cTx subject to the constraints

f x()
f1 x1 x2 … xn, , ,()

 ...
fm x1 x2 … xn, , ,()

=

x
* min

x
fi x()()2

i 1=

m

∑=

min

x
f x() λgg x() λhh x()+ +

λg λh

A1x b1<

A2x b2<

A3x b3=

Chapter 7 Function Reference — optimize

HiQ Reference Manual 7-252 © National Instruments Corporation

The constraint matrices A1, A2, and A3, are dimensioned , , and , where
. The function optimize requires the constraint matrices and constraint

vectors to be consolidated as follows.

Example
Computing the shape of a rope hanging between two points.
// When a heavy rope or chain is hung between two points

// with equivalent horizon, the shape made by the rope or

// chain is known as a catenary. To construct this shape,

// only two basic elements are required: the length of the

// rope or chain and the distance between the hanging points.

// Provide a sample length and distance for a catenary.

L = 3;

h = 1;

// The formula used to compute the catenary is based on a

// single constant b related to L and h by bL = 2*sinh(bh/2).

// Solving for b is not direct, so optimization is used to

// compute it. Define the function to optimize.

bFct = {f:x:"x[1]*L - 2*sinh(.5*x[1]*h)"};

// Find b within a tolerance of 1e-4. Make an initial guess

// for b of 1.

b = optimize (bFct, {v: L - 2*sinh(.5*h)});

p n× q n× r n×
p q r+ + n=

A
A1

A2

A3

=

b
b1

b2

b3

=

Chapter 7 Function Reference — optimize

© National Instruments Corporation 7-253 HiQ Reference Manual

// Use the computed b constant to define the catenary

// function. We define the catenary so that the lowest

// point corresponds with x = 0.

function catenary(x)

// Let the function know that b and h, which are defined outside

// this function, will be used.

project b, h;

// By our definition, the catenary is only defined

// between the hanging points, i.e., [-.5*h, .5*h]

if (abs(x) > .5*h) then

return <nan>;

// Compute the catenary at point x.

else

return (cosh(b*x) - cosh(b*h))/b;

end if;

end function;

// Generate a temporary set of evaluation points for the domain.

// Defining it as local frees it up after execution.

local domain = seq(-.5*h, .5*h, 100, <pts>);

// Graph the catenary over the provided domain.

catenaryGraph = createGraph(domain, catenary);

// Make the graph reflect the physical nature of the problem.

catenaryGraph.axis.y.range.inverted = true;

catenaryGraph.border.visible = <off>;

catenaryGraph.axes.majorgrid.visible = <off>;

catenaryGraph.plots.style = <point>;

catenaryGraph.plots.point.style = <emptycircle>;

catenaryGraph.plots.point.size = 6;

See Also
fit , solve

Chapter 7 Function Reference — partial

HiQ Reference Manual 7-254 © National Instruments Corporation

partial

Purpose
Computes the partial derivative of a function.

Usage
y = partial(fct, x , h, method, iFct)

Parameters

Name Type Description

fct Function The input function. A single equation as a
function of multiple variables.

x Real Vector The point at which to calculate the derivative.

h Real Scalar The step size to use. (Optional.)

method HiQ Constant The finite difference method to use. (Optional.
Default = <central>)

<forward>
<extended>
<central>

iFct Integer Scalar The input function variable of which to
calculate the partial derivative. (Optional.)

y Real Scalar or
Vector

The partial derivatives of the input function.
(Scalar value if iFct parameter is specified.)

Chapter 7 Function Reference — partial

© National Instruments Corporation 7-255 HiQ Reference Manual

Comments
Given a scalar-valued function of several variables

the partial derivative of f with respect to x is defined as

If the step size is equal to zero, HiQ chooses an appropriate step size based on the precision
of your computer.

The forward, central, and extended finite central difference formulas result in finite difference
approximations of order one, two, and four respectively.

See Also
derivative , hessian , jacobian

y f x1 … xn, ,() f x()= =

∂ f
∂x

∂f
∂x

 ...
∂f

∂xn

=

Chapter 7 Function Reference — PDF

HiQ Reference Manual 7-256 © National Instruments Corporation

PDF

Purpose
Computes the probability density function.

Usage
Computes the probability density of types requiring one parameter.

y = PDF(x, aType, a)

Computes the probability density of types requiring two parameters.
y = PDF(x, bType, a, b)

Parameters

Name Type Description

x Real Scalar The input value.

aType HiQ Constant The density type requiring a single parameter.

<chiSq>
<student>
<geometric>
<poisson>

a Real Scalar The first probability density parameter.

bType HiQ Constant The density type requiring two parameters.

<beta>
<cauchy>
<exponential>
<f>
<gamma>
<normal>
<weibull>
<binomial>
<negBinomial>

b Real Scalar The second probability density parameter.

y Real Scalar The value of the probability density function.

Chapter 7 Function Reference — PDF

© National Instruments Corporation 7-257 HiQ Reference Manual

Comments
The probability densities are defined by the following equations.

PDF(x, <chiSq>, a)

PDF(x, <student>, a)

PDF(k, <geometric>, a)

PDF(k, <poisson>, a)

PDF(x, <beta>, a, b)

PDF(x, <cauchy>, a, b)

PDF(x, <exp>, a, b)

PDF(x, <f>, a, b)

PDF(x, <gamma>, a, b)

PDF(x, <normal>, a, b)

1

2

a
2

Γ a
2

------------------x

a
2
--- 1–

e

x
2
---–

Γ a 1+
2

aπ()
1
2

Γ a
2

--------------------------- 1 x

2

a
----+

a 1+

2
------------–

a 1 a–()x

e
a–
a

x

x!

1
β a b,()
-----------------x

a 1– 1 x–()b 1–

1

πb 1 x a–
b

 2

+

1
b
---e

x a–
b

 –

a

a
2

b

b
2

B a b,()
----------------- x

a
2
--- 1–

b ax+()a b+

a
b

Γ b()
-----------x

b 1–
e

ax–

1

2πb
--------------e

x a–()2

2b2

Chapter 7 Function Reference — PDF

HiQ Reference Manual 7-258 © National Instruments Corporation

See Also
CDF

PDF(x, <weibull>, a, b)

PDF(k, <binomial>, a, b)

PDF(k, <negBinomial>, a, b)

abx
a 1–

e
bxa

–

a

k
 a

k
1 b–()a k–

a k 1–+

k
 ba 1 b–()

k

Chapter 7 Function Reference — permu

© National Instruments Corporation 7-259 HiQ Reference Manual

permu

Purpose
Permutes a vector or matrix from the left (row permutation) and/or right (column
permutation).

Usage
Computes a permutation vector associated with a pivot vector.

p = permu(piv)

Computes the permutation of a vector.
B = permu(p, a)

Computes the row permutation of a matrix.
B = permu(p, A)

Computes the column permutation of a matrix.
B = permu(A, q)

Computes the row and column permutation of a matrix.
B = permu(p, A, q)

Parameters

Comments
A permutation vector is a set of integers that define an ordering of a set of objects. In linear
algebra, a permutation vector describes an ordering of elements in a vector or of rows or
columns in a matrix. For example, the row permutation of a matrix results in the reordering

Name Type Description

piv Integer Vector An n-element pivot vector.

p Integer Vector An n-element permutation vector.

a Vector An n-element input vector.

A Matrix A square nxn matrix.

q Integer Vector An n-element permutation vector.

p Integer Vector The n-element permutation vector associated
with the pivot vector.

B Matrix The square nxn permuted matrix.

Chapter 7 Function Reference — permu

HiQ Reference Manual 7-260 © National Instruments Corporation

of the rows in the matrix. A permutation of an matrix A is defined as one of the
following orthogonal transformations

where P and Q are permutation matrices. A permutation matrix is a row (or column)
permuted identity matrix defined by a permutation vector. For example, the permutation
vector {5, 4, 3, 2, 1} describes the permutation matrix

See Also
compose , inv

row permutation

column permutation

row and column permutation

symmetric row and column permutation

n n×

B PA=

B APT=

B PAQT=

B PAPT=

n n×

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

Chapter 7 Function Reference — pinv

© National Instruments Corporation 7-261 HiQ Reference Manual

pinv

Purpose
Computes the pseudo-inverse of a matrix.

Usage
B = pinv(A , tolr)

Parameters

Comments
An matrix A can be thought of as a linear operator, mapping an n-dimensional input
vector space X to an m-dimensional output vector space Y. If m is equal to n and A is full rank,
every non-zero vector in the output space maps to one and only one non-zero vector in the
input space. An operator, B, mapping the output space to the input space exists and is called
the inverse of A. The matrices A and B satisfy the identity

If m is not equal to n or if A is rank-deficient, an inverse operator does not exist. This is
because there is no longer a one-to-one correspondence between vectors in X and Y. In this
case, an operator, B, exists that satisfies the identities

Name Type Description

A Real Matrix The mxn input matrix.

tolr Real Scalar The algorithm tolerance. (Optional.
Default =<epsilon>)

B Real Scalar The pseudo-inverse of the input matrix.

m n×

AB I BA= =

ABA I=

BAB B=

Chapter 7 Function Reference — pinv

HiQ Reference Manual 7-262 © National Instruments Corporation

The matrix B is called the pseudo-inverse of A . The matrix A and its pseudo-inverse B can be
used to create an orthogonal projection onto the range space and the orthogonal complement
of the null space of A. The nullspace of A, N(A), is defined as

and range space of A, R(A), is defined as

The orthogonal projection onto the range space is AB. The orthogonal projection onto the
orthogonal complement of the null space is BA.

See Also
inv , SVD

x:Ax 0={ }

y: y Ax={ }

Chapter 7 Function Reference — pow

© National Instruments Corporation 7-263 HiQ Reference Manual

pow

Purpose
Computes a scalar, matrix, or polynomial raised to a power.

Usage
Computes a scalar or matrix raised to a power.

y = pow(x, a)

Computes a polynomial raised to a power given a maximum degree.
y = pow(p, a , maxDegree)

Parameters

Comments
The function pow is equivalent to the operators ^ and ** .

See Also
cbrt , sqrt

Name Type Description

x Scalar or Matrix The input argument.

a Scalar The exponent.

p Polynomial The input polynomial.

maxDegree Integer Scalar The maximum degree of the output
polynomial. (Optional. Default = 128)

y Scalar, Matrix,
or Polynomial

The value of the argument raised to the
exponent a.

Chapter 7 Function Reference — prod

HiQ Reference Manual 7-264 © National Instruments Corporation

prod

Purpose
Computes the product of the elements in a vector or matrix.

Usage
y = prod(A)

Parameters

See Also
sum

Name Type Description

A Real or Complex
Vector or Matrix

The input argument.

y Real or Complex
Scalar

The product of the elements in the input
argument.

Chapter 7 Function Reference — putFileName

© National Instruments Corporation 7-265 HiQ Reference Manual

putFileName

Purpose
Displays the file dialog box prompting for a new or existing filename.

Usage
file = putFileName(path, name, filter, iFilter, title)

Parameters

Comments
The parameter filter is a list of filter name and filter type pairs separated by vertical bars (|)
as follows.

Filter_Name_1|Filter_1|Filter_Name_2|Filter_2|…|Filter_Name_n|Filter_n|

The filter name appears in the Files of Type pull-down menu of the dialog box. Users can
choose from among any of the file types you specify in your filter string. For example, the
following putFileName function call prompts the user with the Open dialog box and allows
file searches for two file types, including All Files (*.*), in the current directory:

putFileName("", "All Files (*.*)|*.*|Data Files (*.dat)|*.dat", 1, "Open");

See Also
getFileName

Name Type Description

path Text The initial directory path to display. (Optional.)

name Text The default file name to display. (Optional.)

filter Text A list of file types (suffixes) to display.
(Optional.)

iFilter Integer Scalar An index (to filter) that is the default file type
to display. (Optional. Default = 1)

title Text The title of the dialog box. (Optional.)

file Text The full path and name of the selected file.

Chapter 7 Function Reference — QRD

HiQ Reference Manual 7-266 © National Instruments Corporation

QRD

Purpose
Computes the QR decomposition of a matrix.

Usage
[R, Q, pivot, rank] = QRD(A , nType, tolr)

Parameters

Name Type Description

A Real Matrix The input matrix.

nType HiQ Constant The type of orthogonal transformation to use.
(Optional. Default = <house>)

<mGS>
<house>
<givens>
<fastGivens>

tolr Real Scalar The tolerance to use. (Optional.
Default = .0001)

R Real Matrix An nxn upper triangular matrix.

Q Real Matrix An nxn orthogonal matrix.

pivot Integer Vector A vector containing the pivoting information.

rank Integer Scalar The rank of the input matrix.

Chapter 7 Function Reference — QRD

© National Instruments Corporation 7-267 HiQ Reference Manual

Comments
The QR decomposition of an matrix A is the factorization

where Q is a square orthonormal matrix, and R is an upper triangular matrix.

The preferred algorithm to use in the QR decomposition depends on the structure of A. The
Householder algorithm (default) constructs Q as a product of n–2 Householder reflections
and is faster than Givens for non-sparse matrices. The Givens algorithm constructs Q as a
product of Givens rotations and can be advantageous if the matrix A has many zeros.
Numerical stability increases with both the Householder algorithm and the Givens algorithm
by using column pivoting. If you provide the third output, pivot , this function performs
column pivoting to ensure numerical stability and pivot contains the column pivoting
information. Otherwise, no column pivoting occurs. If column pivoting is used, the output
represents the QR decomposition for the permuted matrix, AP, where P is a permutation
matrix associated with the pivoting vector. The following script shows how to construct AP.

P = permuPiv(piv);

AP = permu(A,P);

The rank of the input matrix A is returned as the fourth output parameter.

The fast Givens algorithm performs faster than the normal Givens algorithm because it
does not require the square root function. This can be useful with sparse or narrow banded
matrices. The modified Gram-Schmidt algorithm is faster than the Householder algorithm
but not as accurate and requires .

See Also
hessenbergD , LUD, schurD , SVD

m n×

A QR=

m m× m n×

m n≥

Chapter 7 Function Reference — quartile

HiQ Reference Manual 7-268 © National Instruments Corporation

quartile

Purpose
Computes the value at the upper end of a quartile of a data set.

Usage
y = quartile(x , n)

Parameters

Comments
The quartiles of a data set are the values in the data set that divide the data set into four parts.
The ith quartile of an n-element data set x is the value xi in the data set that lies at the upper
range of the ith quarter.

The zeroth quartile returns the minimum of the data set and the fourth quartile returns the
maximum of the data set.

See Also
histogram , median , range

Name Type Description

x Real Vector The input data set.

n Integer Scalar The desired quartile of the data set. (Optional.
Default = 1)

y Real Scalar The value of the upper limit of the n-th quartile
of the data set.

Chapter 7 Function Reference — random

© National Instruments Corporation 7-269 HiQ Reference Manual

random

Purpose
Generates a random number.

Usage
Generates a random number between zero and one.

y = random()

Generates a random number with uniform distribution within the specified range.
y = random(a, b, <uniform>)

Generates a random number with normal distribution.
y = random(xMean, xStddev, <normal>)

Generates a random number with exponential distribution.
y = random(k, <exp>)

Generates a random number with Bernoulli distribution.
y = random(p, <bernoulli>)

Parameters

Name Type Description

a Real Scalar The minimum value for the uniform
distribution.

b Real Scalar The maximum value for the uniform
distribution.

xMean Real Scalar The mean of the normal distribution.

xStddev Real Scalar The standard deviation of the normal
distribution.

k Real Scalar The reciprocal of the average of the
exponential distribution.

p Real Scalar The probability of ones occurring in the
distribution.

y Real Scalar A real random number.

Chapter 7 Function Reference — random

HiQ Reference Manual 7-270 © National Instruments Corporation

Comments
The usage random() generates a random number over the interval [0, 1] using the fast Knuth
algorithm.

HiQ automatically seeds the random number generator before a script executes. You should
manually seed the random number generator once with the seed function when you want to
duplicate a random sequence.

See Also
createMatrix , createVector , seed

Usage Probability Density

random(a, b, <uniform>)

0, otherwise

random(a, b, <normal>)

random(k, <exp>)

random(p, <bernoulli>)

1
b a–
------------ a, x b< <

1

2πb
2()

0.5
----------------------e

x a–()2

2b2

–

1
k
---e

x
k
--–

1

2πb
--------------e

x a–()2 2b2()⁄

Chapter 7 Function Reference — range

© National Instruments Corporation 7-271 HiQ Reference Manual

range

Purpose
Computes the range of a data set.

Usage
Computes the range of the entire data set.

y = range(x)

Computes the interquartile range of a data set.
y = range(x, <quartile>)

Parameters

Comments
The range of an n-element data set x is the difference between the maximum and minimum
values in x.

The interquartile range of an n-element data set x is the range of values between the first and
third quartiles of x.

See Also
histogram , median , quartile

Name Type Description

x Real Vector The input data set.

y Real Scalar The range of the data set.

Chapter 7 Function Reference — rank

HiQ Reference Manual 7-272 © National Instruments Corporation

rank

Purpose
Computes the rank of a matrix.

Usage
y = rank(A , tolr)

Parameters

Comments
The rank of a matrix can be defined as the maximum number of linearly independent rows
(or columns). To maximize accuracy, HiQ uses a robust SVD algorithm. The rank of the
matrix is equal to the number of singular values greater than a specified tolerance. This
tolerance is defined as

where is the maximum singular value of the input matrix and tolr is the specified
tolerance.

Although the result of this function is generally reliable and agreeable with the function cond ,
it can be too conservative. Numerical rank also can be calculated using the function QRD.

See Also
det , inv , LUD, trace

Name Type Description

A Matrix The input matrix.

tolr Real Scalar The tolerance to use. (Optional. Default = .01)

y Integer Scalar The rank of the input matrix.

min m n,()σmaxtolr

σmax

Chapter 7 Function Reference — read

© National Instruments Corporation 7-273 HiQ Reference Manual

read

Purpose
Reads bytes from an open file.

Usage
text = read(fid, nBytes)

Parameters

Comments
The resulting text object contains the byte stream as stored in the file. If the file data represents
numeric data, use the function toNumeric to convert the text object to a numeric object.

See Also
import , open , readLine , toNumeric , write

Name Type Description

fid Integer Scalar The file handle of an open file.

nBytes Integer Scalar The number of bytes to read.

text Text The resulting data.

Chapter 7 Function Reference — readLine

HiQ Reference Manual 7-274 © National Instruments Corporation

readLine

Purpose
Reads lines from an open file.

Usage
text = readLine(fid, nLines)

Parameters

Comments
Each line in the file must be terminated by a carriage return and linefeed characters. This
function should be used for ASCII files only. If the text object represents numeric data, use
the function toNumeric to convert the text object to a numeric object.

See Also
import , open , read , toNumeric , writeLine

Name Type Description

fid Integer Scalar The file handle.

nLines Integer Scalar The number of lines to read.

text Text Contains the lines read in.

Chapter 7 Function Reference — reflect

© National Instruments Corporation 7-275 HiQ Reference Manual

reflect

Purpose
Computes the Householder reflection of a vector or matrix.

Usage
Computes the Householder reflection of a vector.

y = reflect(v, x , lambda)

Computes the Householder row reflection of a matrix.
Y = reflect(v, X , lambda)

Computes the Householder column reflection of a matrix.
Y = reflect(X, v , lambda)

Parameters

Comments
Geometrically, the result is the orthogonal reflection with respect to the hyperplane y
perpendicular to v:

See Also
householder , rotate

Name Type Description

v Real Vector The Householder reflection vector.

x Real Vector The input vector to reflect.

lambda Real Scalar The Householder parameter. (Optional.)

X Real Matrix The input matrix to reflect.

y Real Vector The reflected output vector.

Y Real Matrix The reflected output matrix.

y : y v〈 | 〉 0={ }

Chapter 7 Function Reference — remove

HiQ Reference Manual 7-276 © National Instruments Corporation

remove

Purpose
Removes elements of a vector or matrix.

Usage
Removes elements of a vector.

y = remove(x, indices)

Removes rows and columns of a matrix.
Y = remove(X, rowIndices, colIndices)

Parameters

Name Type Description

x Vector The input vector.

indices Integer Vector The indices of the elements to remove.

X Matrix The input matrix.

rowIndices Integer Vector The vector of indices of the rows to remove.
(Optional.)

colIndices Integer Vector The vector of indices of the columns to
remove. (Optional.)

y Vector The resulting vector.

Y Matrix The resulting matrix.

Chapter 7 Function Reference — remove

© National Instruments Corporation 7-277 HiQ Reference Manual

Comments
When all items of the input object are removed, the resulting object is the same type as the
input object and contains 0, <nan>, or (<nan,<nan>) if the input object was integer, real, or
complex respectively.

This operation can either generate a new object or alter the current object in place as follows.

xNew = remove(x, indices);

x = remove(x, indices);

Altering the current object in place saves memory usage.

For matrices, removal of only rows or columns can be performed as follows.

Xcols = remove(X, rowIndices);

Xrows = remove(X,, colIndices);

See Also
find , replace

Chapter 7 Function Reference — removePlot

HiQ Reference Manual 7-278 © National Instruments Corporation

removePlot

Purpose
Removes a plot from a graph.

Usage
removePlot(graph , plot)

Parameters

Comments
For embedded plots, use the plot handle to remove the desired embedded plot. For plot
objects, the plot is removed only from the specified graph. The plot object still exists in the
notebook and in any other graphs.

See Also
addPlot

Name Type Description

graph 2D or 3D Graph The graph containing the desired plot.

plot Integer or 2D or
3D Plot

The plot to remove. If not specified, the
function removes all plots. (Optional.)

Chapter 7 Function Reference — renameFile

© National Instruments Corporation 7-279 HiQ Reference Manual

renameFile

Purpose
Renames a file.

Usage
renameFile(old, new)

Parameters

Comments
Path name may be included to actually change the directory where the file is stored.

See Also
deleteFile , open

Name Type Description

old Text The original file name.

new Text The new file name.

Chapter 7 Function Reference — replace

HiQ Reference Manual 7-280 © National Instruments Corporation

replace

Purpose
Replaces the elements of a vector or matrix.

Usage
Replaces a value in a vector or matrix.

[y, replacedIndices, nReplaced] = replace(x, oldValue, newValue)

Replaces a set of values in a vector or matrix.
[y, replacedIndices, nReplaced, valIndices] = replace(x,

oldValues, newValues, <elements>)

Replaces the occurrences of a subvector or submatrix in a vector or matrix.
[y, replacedIndices, nReplaced] = replace(x, oldxSub, newxSub)

Replaces the occurrences of a subvector in a vector.
[y, replacedIndices, nReplaced] = replace(x, oldXSub, newXSub,

direction)

Replaces the occurrences of values satisfying a predefined condition in a vector or matrix.
[y, replacedIndices, nReplaced] = replace(x, operator, base,

newValue)

Replaces the values in a vector or matrix based on a user-defined function.
[y, replacedIndices, nReplaced] = replace(x, replaceFct)

Parameters

Name Type Description

x Vector or Matrix The input vector or matrix.

oldValue Scalar The old value to replace.

newValue Scalar The new value to use.

oldValues Vector or Matrix The set of old values to replace.

newValues Vector or Matrix The set of new values.

Chapter 7 Function Reference — replace

© National Instruments Corporation 7-281 HiQ Reference Manual

Comments
The replacement in vectors is performed from first element to last. The replacement in
matrices is performed row-wise, first column to last. If you are replacing a set of elements and
the set of elements contains duplicate values, only the first value is used to determine the
replacement value.

oldxSub Vector or Matrix The old subvector or submatrix to replace

newxSub Vector or Matrix The new subvector or submatrix.

oldXSub Vector The old subvector to replace

newXSub Vector The new subvector.

direction HiQ Constant The orientation of the vector to replace.
(Optional. Default = <row>)

<row>
<column>

operator HiQ Constant A predefined operator with which to compare
values.

<GT>
<LT>
<GE>
<LE>
<NE>

base Scalar A parameter used for the predefined condition.

replaceFct Function A user function that determines which values
are replaced.

y Vector or Matrix The output vector or matrix containing the new
values.

replaced
Indices

Integer Vector or
Matrix

The indices of the replaced elements.

nReplaced Integer Scalar The number of elements replaced.

valIndices Integer Vector or
Matrix

The indices into the input set of values
corresponding to the actual values replaced.

Name Type Description

Chapter 7 Function Reference — replace

HiQ Reference Manual 7-282 © National Instruments Corporation

The object type and size of replacedIndices is directly related to the type of objects being
replaced.

If replacing a subvector, each row of an nx2 matrix represents the range of the subvector
replaced. Otherwise, each row of an nx2 matrix represents the row and column index of the
scalar replaced. Each row of an nx4 matrix represents the row and column indices of the upper
left (the first two elements of the row) and lower right (the last two elements of the row)
corners of the occurrence of the replaced object in the matrix.

If the input parameter oldvalues is a vector, the return object valIndices is a vector of
indices. If the input parameter oldvalues is a matrix, the return object valIndices is a
matrix of row and column indices.

When no items are replaced, this function returns the original input object.

The user-defined replace function, replaceFct , for the usage above has the following
definitions.

function replaceFct(x, i, j)

//If the object being replaced is a vector,

//do not use the third input parameter.

//x - scalar, the current element under inspection.

//i - integer scalar, the vector index (or matrix row)

//of the current element.

//j - integer scalar, the matrix column of the current element.

return newValue;

//newValue - scalar, the new value to use.

end function;

See Also
find , remove , subrange

Input Object Old Object Options Indices

vector scalar vector

vector subvector nx2 matrix

vector vector <elements> vector

matrix scalar nx2 matrix

matrix subvector <row> or <column> nx4 matrix

matrix submatrix nx4 matrix

matrix matrix <elements> nx2 matrix

Chapter 7 Function Reference — root

© National Instruments Corporation 7-283 HiQ Reference Manual

root

Purpose
Computes a single root of a function or polynomial.

Usage
Computes the root of a real function between two end points.

[y, nIter] = root(fct, a, b , xTolr, maxIter)

Computes the root of a real function closest to a specified value.
y = root(fct, x0, <newton> , fTolr, xTolr, maxIter, callback,

derivFct)

Computes the root of a complex function closest to a specified value.
y = root(fct, x0, <muller> , fTolr, xTolr, maxIter)

Parameters

Name Type Description

fct Function or
Polynomial

The input function.

x0 Real or Complex
Scalar

The initial guess.

fTolr Real Scalar The tolerance on the function value. (Optional.
Default = .0001)

xTolr Real Scalar The tolerance on the solution value. (Optional.
Default = .0001)

maxIter Integer Scalar The maximum number of iterations to perform.
(Optional. Default = 64)

callback Function A user function called at the end of each
iteration. (Optional.)

derivFct Function A user function representing the derivative
of the input function. (Optional.)

a Real Scalar The left end point.

b Real Scalar The right end point.

Chapter 7 Function Reference — root

HiQ Reference Manual 7-284 © National Instruments Corporation

Comments
If you provide a complex guess, x0 , HiQ computes a complex root if it exists. If you provide
a real guess, HiQ computes a real root if it exists.

The real function must be continuous on the interval. The complex function must be analytic.

See Also
optimize , roots , solve

y Real or Complex
Scalar

The calculated root.

nIter Integer Scalar The number of iterations performed.

Name Type Description

Chapter 7 Function Reference — roots

© National Instruments Corporation 7-285 HiQ Reference Manual

roots

Purpose
Computes the roots of a function or polynomial.

Usage
Computes the roots of a complex analytic function within a circle of a specified radius.

y = roots(fct, radius , nTrap)

Computes the roots of a polynomial.
y = roots(p)

Parameters

Comments
A polynomial p of degree n has n complex roots.

This function computes the roots of a complex analytic function within a radius from the
origin of the complex plane.

Examples
Sorting the roots of a polynomial according to magnitude.
// Order the roots returned from the polynomial root solver in

// descending order according to the root magnitudes.

// Create an example polynomial used to generate the roots.

poly = {poly: "x^5 + x^3 - 2x - 5"};

Name Type Description

fct Function or
Polynomial

The input function or polynomial.

radius Real Scalar The radius within which to calculate the roots.

nTrap Integer Scalar The number of points to use in the trapezoidal
rule. (Optional. Default = 8)

p Polynomial The input polynomial.

y Complex Vector The calculated roots.

Chapter 7 Function Reference — roots

HiQ Reference Manual 7-286 © National Instruments Corporation

// Compute the roots of the polynomial.

proots = roots (poly);

// Generate the sorting index based on the root magnitudes.

// Designate the object rootsAbs as local so it will be freed

// after execution is complete.

local rootsAbs;

[rootsAbs,index] = sort(abs(proots));

// Sort the original set of roots based on the sort index.

proots = sort(proots, index);

// Now make sure that the complex root pairs are ordered by

// ..., a - bi, a + bi, ...

i = 1;

while i < rootsAbs.size do

// Check the ordering of a root pair.

if abs(rootsAbs[i] - rootsAbs[i+1]) < <epsilon> then

local proot = proots[i];

// If the order is incorrect, swap them.

// Otherwise, jump to the next potential pair.

if (sign(proot.i) > 0) then

proots[i] = conj(proots[i]);

proots[i+1] = conj(proots[i+1]);

else

i = i + 2;

end if;

// Look for the next pair starting with the next root.

else

i = i + 1;

end if;

end while;

See Also
optimize , root , solve

Chapter 7 Function Reference — rotate

© National Instruments Corporation 7-287 HiQ Reference Manual

rotate

Purpose
Computes the rotation of a vector or matrix through an angle.

Usage

Computes the rotation of a vector.
y = rotate(c, s, x, row1, row2)

Computes the row rotation of a matrix.
Y = rotate(c, s, X, row1, row2)

Computes the column rotation of a matrix.
Y = rotate(X, c, s, col1, col2)

Parameters

Comments
The result is the orthogonal transformation

 where

Name Type Description

c Real Scalar The first rotation parameter.

s Real Scalar The second rotation parameter.

x Real Vector The n-element vector to rotate.

row1 Integer Scalar The first row to rotate about.

row2 Integer Scalar The second row to rotate about.

X Real Matrix The mxn matrix to rotate.

col1 Integer Scalar The first column to rotate about.

col2 Integer Scalar The second column to rotate about.

y Real Vector The rotation of the input vector.

Y Real Matrix The rotation of the input matrix.

y GT x1

x2

= G c s

s– c

θ()cos θ()sin

θ()sin– θ()cos
= =

Chapter 7 Function Reference — rotate

HiQ Reference Manual 7-288 © National Instruments Corporation

You can use this function with the givens function to selectively introduce zero elements in
a matrix. This function is also useful for performing coordinate transformations.

See Also
givens , reflect

Chapter 7 Function Reference — round

© National Instruments Corporation 7-289 HiQ Reference Manual

round

Purpose
Rounds a number to the nearest whole number.

Usage
y = round(x)

Parameters

Comments
For numbers having a fractional part of .5, this function rounds towards positive infinity.
For numbers having a fractional part of –.5, this function rounds towards negative infinity.

For vectors and matrices, round(x) rounds the input on an element-by-element basis.

See Also
ceil , floor

Name Type Description

x Real Scalar, Vector,
or Matrix

The input argument.

y Real Scalar, Vector,
or Matrix

The rounded value of the input argument.

Chapter 7 Function Reference — saveLog

HiQ Reference Manual 7-290 © National Instruments Corporation

saveLog

Purpose
Saves the contents of the Log Window to file.

Usage
saveLog(fileName)

Parameters

Comments
The function is useful for documenting the execution results of a script when used in
conjunction with logMessage .

See Also
clearLog , logMessage

Name Type Description

fileName Text The file to which you want to save the Log
Window.

Chapter 7 Function Reference — schurD

© National Instruments Corporation 7-291 HiQ Reference Manual

schurD

Purpose
Computes the Schur decomposition of a matrix.

Usage
[H, Q] = schurD(A)

Parameters

Comments
The real Schur decomposition of a square matrix A is defined as

where Q is an orthogonal matrix, and H is a block upper triangular with and
 blocks on main diagonal:

where H ii are square blocks of dimension 1 or 2. The structure of the block triangular matrix
H is called the real Schur normal form. The Schur decomposition is similar to the Jordan
decomposition of a square complex matrix defined as

where X is an nonsingular matrix, and J is an bi-diagonal matrix with the
eigenvalues on the main diagonal and ones and zeros on the super diagonal. The Schur
decomposition trades the bi-diagonal structure of J for a block upper triangular structure inH

Name Type Description

A Real Matrix The input matrix.

H Real Matrix The nxn block triangular Schur real normal
form.

Q Real Matrix An nxn orthogonal matrix.

n n×

A QHQ T=

n n× 1 1×
2 2×

H

H11 H12 … H1m

0 H22 H2m

0 0 … Hmm

=

n n×

A XJX 1–=

n n× n n×

Chapter 7 Function Reference — schurD

HiQ Reference Manual 7-292 © National Instruments Corporation

in return for a better behaved, orthogonal matrix Q. This lends the numerical calculation of
the Schur decomposition to stable numerical methods.

If all eigenvalues of A are real, H is upper triangular. Complex conjugate pairs of eigenvalues
are responsible for the appearance of blocks on main diagonal.

The algorithm for computing the decomposition is based on a QR algorithm with Hessenberg
reduction and implicit double-shift Francis steps and is numerically stable for well-balanced
matrices. This method is iterative and might generate a convergence error in some cases.

This function executes significantly faster when you request only the matrix H as in the
following script.

H = schurD(A);

See Also
hessenbergD , LUD, QRD, SVD

2 2×

Chapter 7 Function Reference — sec

© National Instruments Corporation 7-293 HiQ Reference Manual

sec

Purpose
Computes the secant.

Usage
y = sec(x)

Parameters

Comments
The secant is defined for the real domain (), ,

See Also
arcsec , csc , sech

Name Type Description

x Real or Complex
Scalar

The input angle in radians.

y Real or Complex
Scalar

The secant of the input values.

∞– ∞, x kπ π
2
---–±≠ k 0 1 2 …, , ,=

Chapter 7 Function Reference — sech

HiQ Reference Manual 7-294 © National Instruments Corporation

sech

Purpose
Computes the hyperbolic secant.

Usage
y = sech(x)

Parameters

Comments
The hyperbolic secant is defined for the real domain ().

See Also
arcsech , csch , sec

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The hyperbolic secant of the input value.

∞– ∞,

Chapter 7 Function Reference — seed

© National Instruments Corporation 7-295 HiQ Reference Manual

seed

Purpose
Seeds the random number generator.

Usage
seed(i)

Parameters

Comments
The usage seed() uses the current value of the system clock to seed the random number
generator. HiQ automatically seeds the random number generator before a script executes, so
normally you do not need to use this function. You should use this function when you want to
duplicate a random sequence each time you run a script or when you want to start a new
random sequence within the same script.

See Also
createMatrix , createVector , random

Name Type Description

i Integer Scalar The seed value. (Optional.)

Chapter 7 Function Reference — seq

HiQ Reference Manual 7-296 © National Instruments Corporation

seq

Purpose
Creates a sequence of scalars or vectors.

Usage
Creates an m-element vector initialized with a sequence of whole numbers starting at one.

a = seq(m)

Creates a vector initialized with elements from start to stop with a specified step size.
a = seq(start, stop, stepSize, <size>)

a = seq(start, stop, stepSize)

Creates a vector initialized with elements from start to stop containing a specific number of
elements.

a = seq(start, stop, nSteps, <points>)

Parameters

Comments
To create a sequence starting at a, ending at b, with a given number of elements n, use seq as
in the following script.

y = seq(a, b, n, <points>);

Name Type Description

m Integer Scalar The number of elements to create.

start Real Scalar The starting value.

stop Real Scalar The stopping value.

stepSize Real Scalar The step size to use.

nSteps Integer Scalar The number of steps between the start and
stop values.

x Vector The starting vector.

y Vector The ending vector

Chapter 7 Function Reference — seq

© National Instruments Corporation 7-297 HiQ Reference Manual

Examples
1. Creating a vector of data with equally spaced points (HiQ-Script).
This example shows how to create a vector of data ranging from –<pi> to <pi> in steps of 0.1.

//Create a vector of x data.

x = seq (-<pi>,<pi>,.1);

//Create a vector of y data.

y = cos(x);

//Create a new graph with a new plot of the vector y.

myGraph = createGraph(x,y);

2. Creating a vector of data with a specified number of points (HiQ-Script).
This example shows how to create a five-element vector of data ranging from 1 to 5.

//Solving a symmetric, positive definite linear system.

//Create a 5x5 Moler matrix. The Moler matrix is

//symmetric and positive definite.

A = createMatrix(5,5,<moler>);

//Create the vector b from 1 to 5.

b = seq (5);

//Compute the decomposition (LL') of the

//symmetric, positive definite matrix A.

L = choleskyD(A);

//Solve the system Ax = b using the symmetric, positive

//definite decomposition matrix L.

x = solve(L,b,<choleskyD>);

See Also
createMatrix , createVector , fill , ones

Chapter 7 Function Reference — setFilePos

HiQ Reference Manual 7-298 © National Instruments Corporation

setFilePos

Purpose
Sets the position of a file pointer.

Usage
setFilePos(fid, pos , mode)

Parameters

Comments
You can use this function to ensure you are reading from or writing to the correct location in
a structured file.

See Also
getFilePos , getFileSize , isEOF

Name Type Description

fid Integer Scalar A valid file ID.

pos Integer Scalar The new position of the file pointer (in bytes
from the beginning of file).

mode HiQ Constant The position in the file from which to move.
(Optional. Default = <seekFromCurrent >)

<seekFromEnd>
<seekFromStart>
<seekFromCurrent>

Chapter 7 Function Reference — sign

© National Instruments Corporation 7-299 HiQ Reference Manual

sign

Purpose
Computes the sign of a number.

Usage
y = sign(x)

Parameters

Comments
This function returns the following results.

For complex numbers, sign(x) returns a complex number representing the sign of the real
and imaginary components. For vectors and matrices, sign(x) returns the sign of the input
on an element-by-element basis.

See Also
abs , arg

Name Type Description

x Scalar, Vector, or
Matrix

The input argument.

y Scalar, Vector, or
Matrix

1 if the sign of the input is positive, -1 if the
sign of the input is negative, and 0 if the input
is 0.

Input Result

x > 0 1

x < 0 –1

x = 0 0

x = <nan> <nan>

Chapter 7 Function Reference — sin

HiQ Reference Manual 7-300 © National Instruments Corporation

sin

Purpose
Computes the sine.

Usage
y = sin(x)

Parameters

Comments
The sine is defined for the real domain ().

See Also
arcsin , cos , sinh

Name Type Description

x Real or Complex
Scalar

The input angle in radians.

y Real or Complex
Scalar

The sine of the input value.

∞– ∞,

Chapter 7 Function Reference — sinh

© National Instruments Corporation 7-301 HiQ Reference Manual

sinh

Purpose
Computes the hyperbolic sine.

Usage
y = sinh(x)

Parameters

Comments
The hyperbolic sine is defined for the real domain ().

Examples
1. Creating a 2D graph with a function plot (HiQ-Script).
This example demonstrates how to quickly graph a function.

//Create a vector of x data with 100 points.

x = seq(-<pi>,<pi>,2*<pi>/100);

//Create a new graph with a new plot of the function sinh.

//Any function parameter (like sinh) must be a

//single-input, single-output function.

myGraph = createGraph(x,sinh);

2. Computing the shape of a rope hanging between two points.
// When a heavy rope or chain is hung between two points

// with equivalent horizon, the shape made by the rope or

// chain is known as a catenary. To construct this shape,

// only two basic elements are required: the length of the

// rope or chain and the distance between the hanging points.

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The hyperbolic sine of the input.

∞– ∞,

Chapter 7 Function Reference — sinh

HiQ Reference Manual 7-302 © National Instruments Corporation

// Provide a sample length and distance for a catenary.

L = 3;

h = 1;

// The formula used to compute the catenary is based on a

// single constant b related to L and h by bL = 2* sinh (bh/2).

// Solving for b is not direct, so optimization is used to

// compute it. Define the function to optimize.

bFct = {f:x:"x[1]*L - 2* sinh (.5*x[1]*h)"};

// Find b within a tolerance of 1e-4. Make an initial guess

// for b of 1.

b = optimize(bFct, {v: L - 2* sinh (.5*h)});

// Use the computed b constant to define the catenary

// function. We define the catenary so that the lowest

// point corresponds with x = 0.

function catenary(x)

// Let the function know that b and h, which are defined outside

// this function, will be used.

project b, h;

// By our definition, the catenary is defined

// only between the hanging points, i.e., [-.5*h, .5*h]

if (abs(x) > .5*h) then

return <nan>;

// Compute the catenary at point x.

else

return (cosh(b*x) - cosh(b*h))/b;

end if;

end function;

// Generate a temporary set of evaluation points for the domain.

// Defining it as local frees it up after execution.

local domain = seq(-.5*h, .5*h, 100, <pts>);

// Graph the catenary over the provided domain.

catenaryGraph = createGraph(domain, catenary);

Chapter 7 Function Reference — sinh

© National Instruments Corporation 7-303 HiQ Reference Manual

// Make the graph reflect the physical nature of the problem.

catenaryGraph.axis.y.range.inverted = true;

catenaryGraph.border.visible = <off>;

catenaryGraph.axes.majorgrid.visible = <off>;

catenaryGraph.plots.style = <point>;

catenaryGraph.plots.point.style = <emptycircle>;

catenaryGraph.plots.point.size = 6;

See Also
arcsinh , cosh , sin

Chapter 7 Function Reference — sinhI

HiQ Reference Manual 7-304 © National Instruments Corporation

sinhI

Purpose
Computes the hyperbolic sine integral function.

Usage
y = sinhI(x)

Parameters

Comments
The hyperbolic sine integral is defined by the following equation.

See Also
coshI , expI , sinI

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the hyperbolic sine integral.

I x()sinh t()sinh
t

----------------- td

0

x

∫=

Chapter 7 Function Reference — sinI

© National Instruments Corporation 7-305 HiQ Reference Manual

sinI

Purpose
Computes the sine integral function.

Usage
y = sinI(x)

Parameters

Comments
The sine integral is defined by the following equation.

See Also
cosI , expI , sinhI

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the sine integral.

Isin x() t()sin
t

-------------- td

0

x

∫=

Chapter 7 Function Reference — skew

HiQ Reference Manual 7-306 © National Instruments Corporation

skew

Purpose
Computes the skew of a data sample.

Usage
y = skew(x , xMean)

Parameters

Comments
The skew an n-element data sample x is defined by the following equation.

where is the mean and is the standard deviation.

See Also
kurtosis , mean, moment

Name Type Description

x Real Vector The input data set.

xMean Real Scalar The mean of the input data set. (Optional.)

y Real Scalar The skew of the input data set.

µ3
1

σ3

xi x–()3

i 1=

n

∑
n

-----------------------------=

x σ

Chapter 7 Function Reference — solve

© National Instruments Corporation 7-307 HiQ Reference Manual

solve

Purpose
Solves a linear or nonlinear system of equations.

Usage
Solves a linear system of equations.

[y, residual, rnk] = solve(A, b , aType)

Solves a linear system of equations in LU (LU factorization) form.
y = solve(L, U, b, piv)

Solves a linear system of equations in LL' (Cholesky factorization) form.
y = solve(L, b, <choleskyD>)

Solves a linear system of equations in LTL' (symmetric indefinite factorization) form.
y = solve(L, T, b, piv, <symD>)

Solves a Vandermonde or Toeplitz linear system of equations.
y = solve(v, b, vType)

Solves a nonlinear system of equations.
[y, nIter, kfTolr, kxTolr] = solve(fct, x0 , iAlg, fTolr, xTolr,

maxIter, Jiter, callback)

Parameters

Name Type Description

A Matrix The mxn linear system matrix.

b Vector The n-element right side of the linear system.

aType HiQ Constant Restricts the solver algorithm. (Optional.)

<leastSq>
<linearSys>

L Matrix The lower triangular system matrix or
decomposition matrix.

U Matrix The upper triangular system matrix or
decomposition matrix.

piv Integer Vector The pivot vector returned from the
function LUD.

Chapter 7 Function Reference — solve

HiQ Reference Manual 7-308 © National Instruments Corporation

T Matrix The tri-diagonal decomposition matrix in the
symmetric indefinite factorization LTL'.

v Real Vector The vector defining the Toeplitz or
Vandermonde system.

vType HiQ Constant Specifies the type of special linear system.

<vandermonde>
<toeplitz>

fct Function A function containing the set of m nonlinear
equations in n variables to solve.

x0 Real Vector An n-element vector containing the initial
guess.

iAlg HiQ Constant The algorithm to use. (Optional.
Default =<quasiNewton>)

<quasiNewton>
<newton>

fTolr Real Scalar The function tolerance. (Optional.
Default = .0001)

xTolr Real Scalar The solution tolerance. (Optional.
Default = .0001)

maxIter Integer Scalar The maximum number of iterations to allow.
(Optional. Default = 128)

JIter Integer Scalar Specifies how often to recalculate the Jacobian
matrix (in iterations). (Optional. Default = 1)

callback Function A function called at the end of each iteration.
(Optional.)

y Vector The solution to the set of linear or nonlinear
equations.

residual Real Scalar The residual of the least-squares solution.

rnk Integer Scalar The rank of the input matrix.

nIter Integer Scalar The number of iterations performed.

Name Type Description

Chapter 7 Function Reference — solve

© National Instruments Corporation 7-309 HiQ Reference Manual

Comments
A set of n linear equations can be represented in matrix form as

where A is the system matrix, b is an n-dimensional vector, and x is an m-dimensional
vector of unknowns.

The usage solve(A, b) solves for x using LU decomposition if A is square and full rank or
a least-squares algorithm if A is not square or is rank deficient. For a square, full-rank A,
HiQ computes the LU decomposition of the system matrix A, then performs forward and
backward substitution. The single function call

x = solve(A, b);

is equivalent to the following two function calls.

[L, U, pivot]=LUD(A);

x = solve(L, U, b, pivot);

See the comments for the function LUD for more information.

For a non-square or rank-deficient A, HiQ solves the least-squares problem defined by the
optimization

where is the objective function and represents the L2 norm. If the number of
equations is greater than the number of unknowns (), the set of equations is said to be
over-determined and in general an exact solution x does not exist. The least-squares solution
xls for over-determined systems is the vector x that minimizes the objective function above.
If the number of equations is less than the number of unknowns (), the set of equations
is said to be under-determined and an infinite number of solutions exist for the objective

kfTolr Integer Scalar true (1) if the function tolerance was met;
false (0) if not.

kxTolr Integer Scalar true (1) if the solution tolerance was met;
false (0) if not.

Name Type Description

Ax b=

n m×

min

x
Ax b– 2

Ax b– 2
.

2
m n>

m n<

Chapter 7 Function Reference — solve

HiQ Reference Manual 7-310 © National Instruments Corporation

function above. In the under-determined system, the least-squares solution xls is the solution
vector x having the minimum L2 norm.

The residual is defined as the value of the objective function at the solution xls.

HiQ provides Householder- and Givens-based QR decomposition algorithms for full-rank
and rank-deficient matrices and a singular value decomposition algorithm. The rank-deficient
algorithms also solve full-rank systems but do not execute as fast as the full-rank algorithms.
For an over-determined system, the full-rank QR algorithm is defined by the following
equations.

over-determined system

under-determined system

min

x
Ax b– 2

min

x 2

x:
min

x
Ax b– 2

A QR R1

0
= =

QTA R1

0
=

QTb
b1

b2

=

Ax b– 2 QTAx QTb– 2
R1

0
x

b1

b2

–

2

R1x1 b1– 2 b2 2+= = =

Chapter 7 Function Reference — solve

© National Instruments Corporation 7-311 HiQ Reference Manual

Q is an orthogonal matrix, R is an upper-triangular matrix, and R1 is an
upper-triangular matrix. Because A is full rank, R1 is full rank and x1 is the solution to the
upper triangular system . The solution and residual to the over-determined,
full-rank, least-squares problem is

The Householder algorithm constructs Q as a product of Householder reflections. The
Givens algorithm constructs Q as a product of Givens rotations and can be advantageous if
the matrix A has many zeros.

The SVD algorithm is equivalent to solving the linear system using the pseudo inverse. It is
slower than the QR algorithms but is very accurate and well behaved for ill-conditioned
matrices.

A set of n nonlinear equations can be represented by the following equation.

The solution to the above set of equations is defined as the vector that satisfies the
following equation.

HiQ uses the Newton or quasi-Newton algorithms to solve for . All three algorithms are
iterative and return a valid solution based on the following criteria.

The notation xk indicates the kth iteration of the algorithm.

m m× m n× n n×

R1x1 b1=

xls
x1

0
=

ρ ls b2 2=

n 2–

f x()

f1 x1 x2 … xn, , ,()
f2 x1 x2 … xn, , ,()

 ...
fn x1 x2 … xn, , ,()

=

x*

f x *() 0=

x*

f x k() 2 εf<

xk xk 1–– 2

xk
2

----------------------------- εx<

Chapter 7 Function Reference — solve

HiQ Reference Manual 7-312 © National Instruments Corporation

The Newton algorithm calculates an iterative solution using the inverse of the Jacobian of the
equations. If the Jacobian is singular, HiQ displays an error message. The parameter JIter
allows the Newton algorithm to re-use the Jacobian from previous iterations, updating the
Jacobian every JIter iteration. This is useful for reducing the time required to solve many
equations, or equations that take a long time to evaluate.

The quasi-Newton algorithm calculates the inverse of the Jacobian on the first iteration, then
updates the inverse Jacobian using Broyden's method and the Sherman-Morrison matrix
inversion formula. If the Jacobian is singular, HiQ displays an error message. The parameter
JIter allows the quasi-Newton algorithm to re-use the Jacobian from previous iterations,
updating the Jacobian every JIter iterations. This is useful for reducing the time required to
solve many equations, or equations that take a long time to evaluate.

Examples
1. Solving a symmetric, positive definite linear system.
This example shows how to solve a linear system, taking advantage of the symmetric, positive
definite properties of the system matrix.

//Solving a symmetric, positive definite linear system.

//Create a 5x5 Moler matrix. The Moler matrix is

//symmetric and positive definite.

A = createMatrix(5,5,<moler>);

//Create the vector b from 1 to 5.

b = seq(5);

//Compute the decomposition (LL') of the

//symmetric, positive definite matrix A.

L = choleskyD(A);

//Solve the system Ax = b using the symmetric, positive

//definite decomposition matrix L.

x = solve (L,b,<choleskyD>);

Chapter 7 Function Reference — solve

© National Instruments Corporation 7-313 HiQ Reference Manual

2. Solving a symmetric, indefinite linear system.
This example shows how to solve a linear system, taking advantage of the symmetric,
indefinite properties of the system matrix.

//Solving a symmetric, indefinite linear system.

//Create a 5x5 ding-dong matrix. The ding-dong matrix is

//symmetric and indefinite.

A = createMatrix(5,5,<dingdong>);

//Create the right-hand-side vector b from 1 to 5.

b = seq(5);

//Compute the symmetric decomposition (LTL') of the

//symmetric, indefinite matrix A.

[L,T,piv] = symD(A);

//Solve the system Ax = b using the symmetric, indefinite

//decomposition matrices L and T.

x = solve (L,T,b,piv,<symD>);

See Also
LUD, root , roots

Chapter 7 Function Reference — sort

HiQ Reference Manual 7-314 © National Instruments Corporation

sort

Purpose
Sorts a data set.

Usage
Sorts a data set.

[y, index] = sort(x , dir, alg, ties)

Sorts a data set using a set of indices.
y = sort(x, index)

Parameters

Name Type Description

x Integer or Real
Vector

The input data set.

index Integer Vector The indices by which to sort the input data set.

dir HiQ Constant The direction to sort. (Optional.
Default =<ascending>)

<ascending>
<descending>

alg HiQ Constant The sorting algorithm to use. (Optional.
Default = <quickSort>)

<quickSort>
<heapSort>
<shellSort>
<insertionSort>
<bucketSort>

ties HiQ Constant Specifies whether to keep duplicate data
points. (Optional. Default = <noTies>)

<noTies>
<keepTies>

index Integer Vector The indices by which to sort the input data set.

Chapter 7 Function Reference — sort

© National Instruments Corporation 7-315 HiQ Reference Manual

Comments
When sorting using an index vector input, the index vector does not need to be the same size
as the unsorted input vector. The sorted output vector will have the same number of elements
as the index vector. Also, indices may appear more than once. For example, for a 10-element
unsorted input vector, the following script creates a vector y containing the elements
{6,7,4,9,9,7}.

x = {v:10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

index = {v:5, 4, 7, 2, 2, 4};

y = sort(x, index);

Examples
1. Sorting a set of complex elements based on magnitude.
// Sort a set of complex elements based on magnitude

// given a vector x of complex elements.

// Compute the magnitude of each complex element.

// Because xMag is not needed for the end result, defining

// it as local will remove it after execution.

local xMag = abs(x);

// Generate the sort index for the magnitudes.

[,index] = sort (xMag);

// Use the sort index from the magnitudes to reorder

// the original set of complex elements.

xSorted = sort (x, index);

2. Sorting a set of complex elements based on phase.
// Sort a set of complex elements based on phase

// given a vector x of complex elements.

y Integer or Real
Vector

The sorted data set.

index Integer Vector The indices mapping the sorted data set to
the unsorted data set.

Name Type Description

Chapter 7 Function Reference — sort

HiQ Reference Manual 7-316 © National Instruments Corporation

// Compute the phase of each complex element.

// Because xPhase is not needed for the end result, defining

// it as local will remove it after execution.

local xPhase = arg(x);

// Generate the sort index based on the phase.

[,index] = sort (xPhase);

// Use the sort index from the phase to reorder

// the original set of complex elements.

xSorted = sort (x, index);

3. Sorting the roots of a polynomial according to magnitude.
// Order the roots returned from the polynomial root solver in

// descending order according to the root magnitudes.

// Create an example polynomial used to generate the roots.

poly = {poly: "x^5 + x^3 - 2x - 5"};

// Compute the roots of the polynomial.

proots = roots(poly);

// Generate the sorting index based on the root magnitudes.

// Designate the object rootsAbs as local so it will be freed

// after execution is complete.

local rootsAbs;

[rootsAbs,index] = sort (abs(proots));

// Sort the original set of roots based on the sort index.

proots = sort (proots, index);

Chapter 7 Function Reference — sort

© National Instruments Corporation 7-317 HiQ Reference Manual

// Now make sure that the complex root pairs are ordered by

// ..., a - bi, a + bi, ...

i = 1;

while i < rootsAbs.size do

// Check the ordering of a root pair.

if abs(rootsAbs[i] - rootsAbs[i+1]) < <epsilon> then

local proot = proots[i];

// If the order is incorrect, swap them.

// Otherwise, jump to the next potential pair.

if (sign(proot.i) > 0) then

proots[i] = conj(proots[i]);

proots[i+1] = conj(proots[i+1]);

else

i = i + 2;

end if;

// Look for the next pair starting with the next root.

else

i = i + 1;

end if;

end while;

See Also
find , remove , replace

Chapter 7 Function Reference — sparsity

HiQ Reference Manual 7-318 © National Instruments Corporation

sparsity

Purpose
Computes the percentage of zero-valued elements in a vector or matrix.

Usage
[s, ss] = sparsity(A , tolr)

Parameters

Comments
The sparsity of an object is defined as the fraction of an object’s elements whose value is zero
or whose absolute value is less than a specified tolerance. The function sparsity calculates
the dominance of zero elements or elements with a value less than a tolerance in a vector or
matrix.

HiQ stores matrices with certain structural properties more efficiently in memory. The second
return parameter, ss , contains the sparsity of the matrix as stored in memory. For more
information matrix structural properties, see the function convert .

To limit round-off errors in real and complex objects, choose a tolerance equal to a multiple
of the precision of your computer.

See Also
cond , isMatrix , vanish

Name Type Description

A Vector or Matrix The input vector or matrix.

tolr Real Scalar The tolerance to use for determining zero
elements. (Optional.)

s Real Scalar The structural sparsity of the input.

ss Real Scalar The physical storage sparsity of the input.

Chapter 7 Function Reference — spline

© National Instruments Corporation 7-319 HiQ Reference Manual

spline

Purpose
Computes the spline interpolation of a data set.

Usage
Computes the natural cubic spline interpolation of a data set.

[coefs, intervals] = spline(x, y, <natcubic>)

Computes the cubic spline interpolation of a data set.
[coefs, intervals] = spline(x, y, <cubic>, knotlderiv , knotNderiv)

Computes the b spline interpolation of a data set.
[coefs, intervals] = spline(x, y, , knots , order)

Computes the polynomial spline interpolation of a data set.
[coefs, intervals] = spline(x, y, <poly>, degree)

Parameters

Name Type Description

x Real Vector The n-element x data set used to create the
spline.

y Real Vector The n-element y data set used to create the
spline.

knotlderiv Real Scalar The first derivative at the start of the data.
(Optional. Default = 0.0)

knotNderiv Real Scalar The first derivative at the end of the data.
(Optional. Default = 0.0)

knots Real Vector The knots to use. (Optional.)

order Integer Scalar The order of the b spline. (Optional.
Default =3)

degree Integer Scalar The degree of the polynomial spline.

coefs Matrix The coefficients of the polynomials defining
the spline.

intervals Matrix The domains for each polynomial defining the
spline.

Chapter 7 Function Reference — spline

HiQ Reference Manual 7-320 © National Instruments Corporation

Comments
Unlike data fitting, spline and polynomial interpolation require the interpolant to pass through
the data set used to compute the interpolation. Spline interpolation uses several lower degree
piecewise-continuous polynomials for interpolation of a data set, avoiding problems
associated with higher degree single polynomial interpolation.

The cubic and natural cubic splines use cubic polynomials and differ only in the required
end-point conditions of the interpolation. A cubic spline interpolant s of an n-element data set
x requires the first derivative of the interpolant at the end points to be fixed.

A natural cubic spline interpolant s of an n-element data set x requires the second derivative
of the interpolant at the end points to be zero.

The b-spline interpolant of an n-element data set x uses a cubic or higher degree polynomial
and requires both end-point conditions of the cubic spline and the natural cubic spline with

 and .

If the parameter knots is not provided, HiQ generates a knot vector by averaging the
elements of the input vector in groups of order+1 . The first and last knots are equal to the
first and last elements of the input vector.

See Also
fit , interp , splineEval

ds
dx1

-------- a=

ds
dxn

-------- b=

d
2
s

dx1
2

-------- 0=

d
2
s

dxn
2

-------- 0=

a 0= b 0=

Chapter 7 Function Reference — splineEval

© National Instruments Corporation 7-321 HiQ Reference Manual

splineEval

Purpose
Evaluates a spline at the given points.

Usage
y = splineEval(x, splineType, coefs, intervals)

Parameters

Comments
The coefficient matrix stores each polynomial component in a column. For the i-th
polynomial component, the k-th degree coefficient is located in row i and column k+1 of the
object coefs . This means that the degree of the spline is coef.rows-1 and the number of
spline components is coef.columns .

For this model to be valid, the object intervals must have two rows and coef.columns
columns. Each interval must be continuous and not overlapping. In other words, the value of
intervals[2,i] , the end of the i interval over which the i polynomial is defined, must be
identical to the vale of intervals[1, i+1] , the start of the i +1 interval over which the i +1
polynomial is defined.

This function returns <NaN> if an input element is outside the intervals defined.

See Also
fit , fitEval , interp , interpEval , spline

Name Type Description

x Real Vector The points to evaluate at the spline.

splineType HiQ Constant The type of spline to evaluate.

<cubic>
<natcubic>

coefs Real Matrix The matrix of coefficients defining the spline
components.

intervals Real Matrix The matrix of intervals defining the domain for
each spline component.

y Real Vector The value of the spline at the input.

Chapter 7 Function Reference — sqrt

HiQ Reference Manual 7-322 © National Instruments Corporation

sqrt

Purpose
Computes the square root of a number.

Usage
y = sqrt(x)

Parameters

Comments
The real domain of this function is . When you want to calculate a complex root, use the
complex form of x. For example, the square root of –1 is represented by the square root of the
complex number (–1, 0).

See Also
cbrt , pow

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The square root of the input argument.

x 0≥

Chapter 7 Function Reference — stdDev

© National Instruments Corporation 7-323 HiQ Reference Manual

stdDev

Purpose
Computes the standard deviation of a data sample.

Usage
y = stdDev(x , xMean)

Parameters

Comments
The standard deviation, , of an n-element data set x is the square root of the variance and is
defined as

See Also
avgDev , mean

Name Type Description

x Real Vector The input data set.

xMean Real Scalar The mean of the input data set (Optional.)

y Real Scalar The standard deviation of the input data set.

σ

1
n 1–
------------ xi x–()2

i 1=

n

∑

Chapter 7 Function Reference — stirling

HiQ Reference Manual 7-324 © National Instruments Corporation

stirling

Purpose
Computes the Stirling approximation to the gamma function.

Usage
y = stirling(x)

Parameters

Comments
The Stirling approximation to the gamma function is defined as

See Also
digamma , gamma

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the stirling function.

Γ x() e
x–
x

x 1
2
---–

2π()
1
2

1 1
12x
--------- 1

288x2
-------------- 139

51840x3
--------------------– 571

2488320x4
--------------------------– …+ + +≈

Chapter 7 Function Reference — struve

© National Instruments Corporation 7-325 HiQ Reference Manual

struve

Purpose
Computes the struve function.

Usage
y = struve(x, v)

Parameters

Comments
The Struve function of order ν, Hν(x), is a solution of the differential equation

See Also
weber

Name Type Description

x Real Scalar The input argument.

v Real Scalar The index parameter.

y Real Scalar The value of the struve function.

x2d
2
w

dx
2

--------- xdw
dx
------- x2 v2–()w+ + 4 0.5x()v 1+

πΓ v 1+()
----------------------------=

Chapter 7 Function Reference — subrange

HiQ Reference Manual 7-326 © National Instruments Corporation

subrange

Purpose
Returns a subrange from a vector or matrix.

Usage
Returns the subrange of a vector given a vector of indices.

y = subrange(x, indices)

Returns a subrange of a vector given a set of index ranges.
y = subrange(x, indexRanges)

Returns the subrange of a matrix given vectors of row and column indices.
y = subrange(X, rowIndices, colIndices)

Returns the input vector with new values in place of the original elements identified by
indices.

y = subrange(x, indices, values)

Returns the input matrix with new values in place of the original elements identified by the
row and column indices.

y = subrange(X, rowIndices, colIndices, Values)

Parameters

Name Type Description

x Vector The input vector.

indices Integer Vector The vector of indices.

indexRanges Integer Matrix Two-column matrix where each row specifies a
range of indices.

X Matrix The input matrix.

rowIndices Integer Scalar or
Integer Vector

The row index or vector of row indices.

colIndices Integer Scalar or
Integer Vector

The column index or vector of column indices.

values Scalar or Vector The scalar value to use to fill the range of the
input vector or the vector value to use to
replace the input vector subrange.

Chapter 7 Function Reference — subrange

© National Instruments Corporation 7-327 HiQ Reference Manual

Comments
The indices must be valid for the input object. When using this function to assign vector or
matrix values to a subrange of a vector or matrix, the input vector (values) or matrix
(Values) must be compatibly dimensioned with the given subrange.

The parameter indexRanges is a two-column matrix where each row specifies a starting and
ending index for the range of indices to include. For example, the following script generates
a vector equivalent to {v:1, 2, 4, 5, 7, 8, 9}.

x = seq(10);

indexRanges = {1,2;4,5;7,9};

y = subrange(x, indexRanges);

Repeating an index will cause that element or range to be repeated in the output.
This operation can either generate a new object or alter the current object as follows.

y = subrange(x, indices);

x = subrange(x, indices);

Also, retrieval based on only rows or columns is possible.

Xcols = subrange(X, rowIndices, <all>);

Xrows = subrange(X, <all>, colIndices);

See Also
find , remove , replace

Values Scalar, Vector, or
Matrix

The scalar value to use to fill the range of the
input matrix or the vector or matrix value to use
to replace the input matrix subrange.

y Vector The resulting vector.

Y Matrix The resulting matrix.

Name Type Description

Chapter 7 Function Reference — sum

HiQ Reference Manual 7-328 © National Instruments Corporation

sum

Purpose
Computes the sum of the elements in a vector or matrix.

Usage
y = sum(A)

Parameters

See Also
prod

Name Type Description

A Vector or Matrix The input argument.

y Scalar The sum of the elements in the input argument.

Chapter 7 Function Reference — SV

© National Instruments Corporation 7-329 HiQ Reference Manual

SV

Purpose
Computes the singular values of a matrix.

Usage
s = SV(A)

Parameters

Comments
The singular values of an matrix A are the diagonal elements in the matrix in the
factorization

where U is an orthonormal matrix whose columns contain the m left singular vectors,
 is an matrix

S is a square matrix () matrix with the k singular values along the main
diagonal in descending order,

 if

and V is an orthonormal matrix whose columns contain the n right singular vectors. The
singular values are the positive square roots of the eigenvalues of ATA if or AA T if

, and p is equal to the rank of A.

Name Type Description

A Real Matrix The input matrix.

s Real Vector The singular values of the input matrix in
descending order.

m n× Σ

A U ΣVT=

m m×
Σ m n×

Σ S 0
0 0

=

k k× k min m n,()=

S

σ1 0 … 0

0 σ2 0

0 0 … σk

= 1 … σp 0 σp 1+ … σ= = =>≥ ≥

n n×
m n<

m n>

Chapter 7 Function Reference — SV

HiQ Reference Manual 7-330 © National Instruments Corporation

See Also
eigen , pinv , SVD

Chapter 7 Function Reference — SVD

© National Instruments Corporation 7-331 HiQ Reference Manual

SVD

Purpose
Computes the singular value decomposition of a matrix.

Usage
[U, S, V] = SVD(A)

Parameters

Comments
The singular value decomposition of an matrix A is the factorization

where U is an orthonormal matrix whose columns contain the m left singular vectors,
 is an matrix

Name Type Description

A Real Matrix The input matrix.

U Real Matrix A matrix containing the left singular vectors.

S Real Matrix A matrix whose main diagonal contains the
singular values.

V Real Matrix A matrix containing the right singular vectors.

m n×

A U ΣVT=

m m×
Σ m n×

Σ S 0
0 0

=

Chapter 7 Function Reference — SVD

HiQ Reference Manual 7-332 © National Instruments Corporation

S is a square matrix () matrix with the k singular values along the main
diagonal in descending order,

 if

and V is an orthonormal matrix whose columns contain the n right singular vectors. The
singular values are the positive square roots of the eigenvalues of ATA if or AA T if

, and p is equal to the rank of A.

Singular value decomposition is extremely useful in numerical analysis and used by the
function rank to calculate the rank of a matrix and the function pinv to calculate the pseudo
inverse of a matrix. Applications of singular value analysis include solving the least squares
problem, optimization, data fitting, and linear systems analysis.

See Also
hessenbergD , pinv , QRD, schurD , solve , SVD

k k× k min m n,()=

S

σ1 0 … 0

0 σ2 0

0 0 … σk

= σ1 … σp 0 σp 1+ … σk= = =>≥ ≥

n n×
m n<

m n>

Chapter 7 Function Reference — symD

© National Instruments Corporation 7-333 HiQ Reference Manual

symD

Purpose
Computes the symmetric indefinite decomposition (LTL') of a matrix.

Usage
[L, T] = symD(A)

Parameters

Comments
The LTLT decomposition of a square , symmetric, indefinite matrix A is the
factorization

where L is an lower triangular matrix with ones along the main diagonal, and T is an
 tri-diagonal symmetric matrix. This function uses row and column pivoting to ensure

numerical stability and maintain symmetry. Thus the resulting LTLT decomposition is for the
transformed matrix PAPT rather than A, where P is a permutation matrix. This permutation
information is returned as a pivot vector in pivot . The following code shows how to generate
the matrix PAPT:

[L, T, pivot] = symD(A);

p = permuPiv(pivot);

PAP = permu(p, A, p);

LTL = L*T*L’;

By definition of the LTLT decomposition, the matrices PAP and LTL are identical.

Name Type Description

A Matrix The square, nxn input matrix.

L Matrix The nxn lower triangular matrix in the
decomposition LTL'.

T Matrix The nxn tri-diagonal matrix in the
decomposition LTL'.

n n×

A LTL T=

n n×
n n×

Chapter 7 Function Reference — symD

HiQ Reference Manual 7-334 © National Instruments Corporation

Examples
Solving a symmetric, indefinite linear system.
This example shows how to solve a linear system, taking advantage of the symmetric,
indefinite properties of the system matrix.

//Solving a symmetric, indefinite linear system.

//Create a 5x5 ding-dong matrix. The ding-dong matrix is

//symmetric and indefinite.

A = createMatrix(5,5,<dingdong>);

//Create the right-hand-side vector b from 1 to 5.

b = seq(5);

//Compute the symmetric decomposition (LTL') of the

//symmetric, indefinite matrix A.

[L,T,piv] = symD(A);

//Solve the system Ax = b using the symmetric, indefinite

//decomposition matrices L and T.

x = solve(L,T,b,piv,<symD>);

See Also
choleskyD , LUD, solve

Chapter 7 Function Reference — tan

© National Instruments Corporation 7-335 HiQ Reference Manual

tan

Purpose
Computes the tangent.

Usage
y = tan(x)

Parameters

Comments
The tangent is defined for the real domain (), where

See Also
arctan , cot , tanh

Name Type Description

x Real or Complex
Scalar

The input angle in radians.

y Real or Complex
Scalar

The tangent of the input.

∞– ∞, x kπ π
2
---–±≠ k 0 1 2 3 …, , , ,=

Chapter 7 Function Reference — tanh

HiQ Reference Manual 7-336 © National Instruments Corporation

tanh

Purpose
Computes the hyperbolic tangent.

Usage
y = tanh(x)

Parameters

Comments
The hyperbolic tangent is defined for the real domain ().

See Also
arctanh , coth , tan

Name Type Description

x Real or Complex
Scalar

The input argument.

y Real or Complex
Scalar

The hyperbolic tangent of the input.

∞– ∞,

Chapter 7 Function Reference — time

© National Instruments Corporation 7-337 HiQ Reference Manual

time

Purpose
Returns the current time.

Usage
[now, hour, minute, second, millisecond] = time(timeZone)

Parameters

Comments
This function creates a text object containing the current hour, minute, and second using a
twelve hour clock. For example, the following script returns text similar to 1:30:38 PM .

now = time();

See Also
date , timer , wait

Name Type Description

timeZone HiQ Constant Specifies either local or coordinated universal
time. (Optional. Default = <local>)

<local>
<utc>

now Text The current time.

hour Integer Scalar The current hour.

minute Integer Scalar The current minute.

second Integer Scalar The current second.

millisecond Integer Scalar The current millisecond.

Chapter 7 Function Reference — timer

HiQ Reference Manual 7-338 © National Instruments Corporation

timer

Purpose
Returns the time elapsed since the current session of HiQ began.

Usage
elapsed = timer()

Parameters

Comments
The returned value represents real time, not CPU time. Timer resolution is approximately
0.84 microseconds.

See Also
date , time , wait

Name Type Description

elapsed Real Scalar The time elapsed since HiQ was launched.

Chapter 7 Function Reference — toComplex

© National Instruments Corporation 7-339 HiQ Reference Manual

toComplex

Purpose
Converts any numeric type to complex.

Usage
z = toComplex(x, y)

Parameters

Comments
For integer and real inputs, the imaginary portion of the return object is set equal to zero.

See Also
fPart , iPart , toInteger , toReal

Name Type Description

x Scalar, Vector,
Matrix, or
Polynomial

The object to use for the real portion of the
result.

y Scalar, Vector,
Matrix, or
Polynomial

The object to use for the imaginary portion of
the result. (Optional.)

z Complex Scalar,
Vector, Matrix, or
Polynomial

The complex result.

Chapter 7 Function Reference — toInteger

HiQ Reference Manual 7-340 © National Instruments Corporation

toInteger

Purpose
Creates an integer numeric object.

Usage
y = toInteger(x)

Parameters

See Also
fPart , iPart , toComplex , toReal

Name Type Description

x Scalar, Vector, or
Matrix

The input argument.

y Integer Scalar,
Vector, or Matrix

The input cast to an integer object.

Chapter 7 Function Reference — toMatrix

© National Instruments Corporation 7-341 HiQ Reference Manual

toMatrix

Purpose
Converts any numeric object to a matrix object.

Usage
y = toMatrix(x)

Parameters

Comments
If the input is a vector then the matrix result contains the input vector in the first column. If
the input is a polynomial, then the matrix result contains the coefficients of the polynomial in
the first column.

See Also
toComplex , toInteger , toNumeric , toReal , toScalar , toText , toVector

Name Type Description

x Scalar, Vector,
Matrix, or
Polynomial

The object to convert.

y Matrix The matrix result.

Chapter 7 Function Reference — toNumeric

HiQ Reference Manual 7-342 © National Instruments Corporation

toNumeric

Purpose
Creates a numeric object from a text object.

Usage
y = toNumeric(text, format , m, n)

Parameters

Comments
HiQ uses the parameter format to convert data from a source object to a target object. For
the toNumeric function, the source object is a text object and the target object is a numeric
object. HiQ provides predefined constants for the most commonly used data format strings.
If you do not provide the parameter format , HiQ imports the data as numeric text and creates
a matrix object.

If provided, the parameters m and n determine the dimension of the resulting vector or matrix
object. If you only provide the m parameter, HiQ repetitively imports data from the file using
the format description m times. The resulting object has as many columns as numbers
imported on a single pass of the format description. If you provide both parameters, HiQ
imports enough data from the file to create an appropriately dimensioned matrix (or vector if
column is one). If these parameters are not provided, HiQ imports the entire source file and
creates a vector object if the source file is numeric binary data or a matrix object if the source
file is numeric text data. Each row in the resulting matrix contains the values on each line of
the source file. The matrix row elements are zero-padded to create a square matrix if
necessary.

Name Type Description

text Text The input text object.

format Text The format to use to convert the string.

m Integer Scalar The number of rows to create. (Optional.
Default = <toEndOfStream>)

n Integer Scalar The number of columns to create. (Optional.)

y Scalar, Vector, or
Matrix

The resulting numeric object.

Chapter 7 Function Reference — toNumeric

© National Instruments Corporation 7-343 HiQ Reference Manual

A format string is composed of three strings describing the external data source, the format
of the data, and the internal target object. These strings are separated by colons (:) as follows.

"[ExternalDescr]:[FormatDescr]:[InternalDescr]"

Each string is composed of identifiers preceded by a percent sign (%). These strings and their
identifiers are described in detail below for the import function.

External Description
The source description string describes how the data is stored in the file. HiQ supports both
big endian and little endian byte ordering. The valid identifiers for the source description
string are defined in the following table.

Source Identifier Description

%littleendian

%intel

Bytes are stored in the file with the least significant byte first.
Intel CPU-based computers use little endian byte ordering.
(Default.)

%bigendian

%motorola

Bytes are stored in the file with the most significant byte first.
Motorola CPU-based computers use big endian byte
ordering.

%Excel

%Excel[sheet]

Source file is an Excel file. In the second form the name of
the sheet to be imported is specified. If omitted the first sheet
in the file is imported.

%range[A1style]

%range[HiQStyle]

For Excel files, indicates the desired cell range. If omitted all
cells with data are imported. The range can be the Excel A1
style (for example, %range[A1:C3]) or the HiQ-Script
subscript range style (for example, %range[1:3,1:3]). The
HiQ-Script range works exactly as in script except that if the
upper range is omitted it is assumed to be *. In other words
%range[1,1] is the same as %range[1:*,1:*] .

%comment[comments] Specifies which characters in the file indicate comments.
Everything from the comment to the end of the line is ignored
on import. For example, %comment[rem] causes everything
to the right of rem to be ignored.

Chapter 7 Function Reference — toNumeric

HiQ Reference Manual 7-344 © National Instruments Corporation

Format Description
The format description string describes how HiQ interprets the numeric data in the file. For
example, you can specify the numeric data as text or binary, the data as integer, real, or
complex, or the width and precision of a text numeric field. The valid identifiers for the format
description string are defined in the following table.

A format description string can have multiple numeric format identifiers but only one
delimiter format identifier. The components of a format identifier string are defined in the
following table.

Format Identifier Description

%delimiters[list] Delimiter identifier specifying the characters
that separate numeric values. (Optional.)

%count type [modifiers] Numeric identifier describing the repeat count
and format type for integer and real numeric
values. (Optional.)

%count cType [type [modifiers]] Numeric identifier describing the repeat count
and format type for complex numeric values.
(Optional.)

Parameter Description

list A string of characters that delimit the numeric values in a file. If list
is empty, HiQ interprets any non-numeric character as a delimiter. For
special characters use the following.

\t (tab)
\] (right square bracket)
\[(left square bracket)
\\ (backslash)

count Indicates the number of times to apply the format identifier. A value of
zero repeats the format identifier until HiQ reaches an end-of-line
character. A zero value is invalid with binary forms. (Optional.
Default = 1.)

Chapter 7 Function Reference — toNumeric

© National Instruments Corporation 7-345 HiQ Reference Manual

Examples of valid format description strings include the following.

%delimiters[,]

%5fb[w8]

%co[fb[w16]]

%2cd[fb[w16]ib[w8]]

type Indicates whether the data is text numeric or binary numeric and integer
or real. (Optional)

fb Binary Real.

ib Binary Integer.

ub Binary Unsigned integer.

modifiers Indicates the numeric field width, number of digits to the right of the
decimal point, and whether to discard the data. (Optional)

wn For text source: Specifies the width of the hexadecimal integer
field in number of characters. (Optional.) On import this must be
specified for every format if a fixed width import is used.

For binary source: Specifies the width of the number in number of
bits (not bytes). (Optional.)

d Tells HiQ to discard the number in this position after importing.
Note: If you are using this to read a rectangular block of data it
would be easier to use the %range source descriptor in some cases.
If you use this in combination with the %range descriptor the
%range filtering takes place after the discard and the discarded
data is not counted when applying the %range filter.

Parameter Description

Chapter 7 Function Reference — toNumeric

HiQ Reference Manual 7-346 © National Instruments Corporation

Internal Description
The internal target description string describes the HiQ object to create with the data.
The valid identifiers for the target description string are defined in the following table.

HiQ imports data according to the format description string. If imported numeric data results
in more than one number, HiQ promotes the target object to a matrix regardless of the value
of the target identifier.

See Also
getNumber , toText

Target
Identifier Description

%scalar Create a scalar object. (Default.) If more than one value is found, the
data is automatically promoted to matrix.

%vector Create a vector object.

%matrix Create a matrix object.

%poly

%polynomial

Create a polynomial object.

%text Create a text object.

%script Create a script object.

%transpose Transpose the data while writing to the target. Reverses the meaning
of row and column counts.

Chapter 7 Function Reference — toReal

© National Instruments Corporation 7-347 HiQ Reference Manual

toReal

Purpose
Converts any numeric type to real.

Usage
y = toReal(x)

Parameters

Comments
For complex inputs, the imaginary portion is disregarded.

See Also
fPart , iPart , toComplex , toInteger , toMatrix , toNumeric , toScalar , toText ,
toVector

Name Type Description

x Scalar, Vector,
Matrix, or
Polynomial

The object to convert.

y Real Scalar, Vector,
Matrix, or
Polynomial

The real result.

Chapter 7 Function Reference — toScalar

HiQ Reference Manual 7-348 © National Instruments Corporation

toScalar

Purpose
Converts any numeric object to a scalar object.

Usage
y = toScalar(x)

Parameters

Comments
If the input is a vector, matrix, or polynomial, then the scalar result is the first element in the
vector, matrix, or polynomial object.

See Also
toComplex , toInteger , toNumeric , toReal , toText

Name Type Description

x Scalar, Vector,
Matrix, or
Polynomial

The object to convert.

y Scalar The scalar result.

Chapter 7 Function Reference — toText

© National Instruments Corporation 7-349 HiQ Reference Manual

toText

Purpose
Creates a text object from a numeric object.

Usage
text = toText(x , format)

Parameters

Comments
HiQ uses the parameter format to convert data from a source object to a target object. For
the toText function, the source object is a numeric object and the target object is a text
object. HiQ provides predefined constants for the most commonly used data format strings.
If you do not provide the parameter format , HiQ converts the data as numeric text.

A format string is composed of three strings describing the external (target) data, the format
of the data, and the internal (source) object. These strings are separated by colons (:) as
follows.

"[ExternalDescr]:[FormatDescr]:[InternalDescr]"

Each string is composed of identifiers preceded by a percent sign (%). These strings and their
identifiers are described in detail below for the export function.

External Description
The source description string describes how the data is stored in the file. HiQ supports both
big endian and little endian byte ordering. The valid identifiers for the source description
string are defined in the following table.

Name Type Description

x Scalar, Vector, or
Matrix

The input values.

format Text The format used to create the text object.
(Optional.)

text Text The output text object.

Chapter 7 Function Reference — toText

HiQ Reference Manual 7-350 © National Instruments Corporation

Format Description
The format description string describes how HiQ writes the numeric data to the file. For
example, you can specify the numeric data as text or binary, the data as integer, real, or
complex, or the width and precision of a text numeric field. The valid identifiers for the format
description string are defined in the following table.

Source Identifier Description

%littleendian

%intel

Bytes are stored in the file with the least significant byte first.
Intel CPU-based computers use little endian byte ordering.
(Default.)

%bigendian

%motorola

Bytes are stored in the file with the most significant byte first.
Motorola CPU-based computers use big endian byte ordering.

%Excel

%Excel[sheet]

Source file is an Excel file. In the second form the name of the
sheet to be imported is specified. If omitted the first sheet in the
file is imported.

%range[A1style]

%range[HiQStyle]

For Excel files, indicates the desired cell range. If omitted all
cells with data are imported. The range can be the Excel A1 style
(for example, %range[A1:C3]) or the HiQ-Script subscript
range style (for example, %range[1:3,1:3]). The HiQ-Script
range works exactly as in script except that if the upper range is
omitted it is assumed to be *. In other words %range[1,1] is the
same as %range[1:*,1:*] .

Format Identifier Description

%delimiters[list] Delimiter identifier specifying the
characters that separate numeric values.
(Optional.)

%count type [modifiers] Numeric identifier describing the repeat
count and format type for integer and real
numeric values. (Optional.)

%count cType [type [modifiers]] Numeric identifier describing the repeat
count and format type for complex numeric
values. (Optional.)

Chapter 7 Function Reference — toText

© National Instruments Corporation 7-351 HiQ Reference Manual

A format description string can have multiple numeric format identifiers but only one
delimiter format identifier. The components of a format identifier string are defined in the
following table.

Parameter Description

list A string of characters that delimit the numeric values in a file. If list
is empty, HiQ uses the tab character. For special characters use the
following.

\t (tab)
\] (right square bracket)
\[(left square bracket)
\\ (backslash)

count Indicates the number of times to apply the format identifier. A value of
zero repeats the format identifier for the entire row of a matrix. A zero
value is invalid with binary forms. (Optional. Default =1.)

type Indicates whether the data is text numeric or binary numeric and integer
or real. (Optional. Default =g)

f Text Decimal real. For example, 123.456 .

e Text Scientific real. For example, 1.23456e02 .

g Text General real. For example, 1.23456e02 .

ee Text Engineering real. For example, 0.123456e03 .

ge Text General engineering real. For example, 0.123456e03 .

i Text Decimal integer. For example, 123 .

d Text Decimal integer. For example, 123 .

x Text Hexadecimal integer. For example, D4A2.

pr Text Polynomial with ascending coefficients.

pf Text Polynomial with descending coefficients.

pvx Text Polynomial with x as the dependent variable.

fb Binary Real.

ib Binary Integer.

ub Binary Unsigned integer.

Chapter 7 Function Reference — toText

HiQ Reference Manual 7-352 © National Instruments Corporation

modifiers Indicates the numeric field width, number of digits to the right of the
decimal point, and whether to discard the data. (Optional)

wn For text destination: Specifies the width of the numeric field in
number of characters.

For binary destination: Specifies the width of the number in
number of bits.

pn Specifies the number of digits of precision to the right of the
decimal point. (Default = p6 .)

p* Tells HiQ to automatically determine the precision.

en Specifies the number of digits in the exponent. Valid values of n
are 1, 2 and 3. (Optional.)

d Writes a 0 formatted to the specified options for text formats. For
binary formats if the write would extend the length of the file then
a 0 is written according to the specified options. In binary mode
if you are writing over an already written portion of the file it will
simply seek past the position leaving it untouched. This allows
you to do binary writes that interleave data.

jr Specifies to right justify the formatted number within the
specified width. (Default.)

jl Specifies to left justify the formatted number within the specified
width.

wc Turns width control on. This automatically adjusts the precision
to fit within the width specified by wn. If the formatted number
does not fit, then the width is increased appropriately.

wc- Turns width control off. (Default.)

wc# For width control, this fills the entire width with # signs if the
formatted number does not fit.

wc... For width control, replaces each of the last three characters with
a dot if the formatted number does not fit.

wce For width control, replaces the last character with the ellipses
character if the formatted number does not fit.

Parameter Description

Chapter 7 Function Reference — toText

© National Instruments Corporation 7-353 HiQ Reference Manual

zp Zero pad the width of this format.

zp+ Zero pad the width of this format.

zp- Do not zero pad the width of this format. (Default.)

tz Removes trailing zeros. (Default.)

tz+ Removes trailing zeros.

tz- Do not remove trailing zeros.

~ If the formatted string results in 0 and the original number is not
identically 0, then output ~0.

~- Do not format 0 strings with ~0. (Default.)

cType Indicates the data is a complex number and specifies the complex
format. The optional modifier for cType , type [modifiers], describes
the format of each of the two components of the complex number. If you
provide only one modifier type [modifiers], that modifier is used for
both components. The valid values for cType are defined in the
following table.

co Ordered pair (real , imaginary) . (Default.)

ci Sum, i format real + imaginary i .

cj Sum, j format real + imaginary j .

cd Polar, degrees, magnitude @ degrees ° .

cr Polar, radians, magnitude @ radians r .

cg Polar, grads, magnitude @ grads g.

Each complex type can modified by inserting the characters inside the
outer modifier brackets.

s Turns space control on. This will strip extra spaces in the
formatting of the complex number.

s- Turns space control off. (Default.)

jr Specifies to right justify the formatted number within the specified
width. (Default for real part.)

jl Specifies to left justify the formatted number within the specified
width. (Default for imaginary part.)

Parameter Description

Chapter 7 Function Reference — toText

HiQ Reference Manual 7-354 © National Instruments Corporation

Examples of valid format description strings include the following.

%delimiters[,]%5f%5i

%5f[w8p3]

%co[f[w6p2]]

%2cd[f[w6p2]i[w2]]

Internal Description
The internal description string describes the HiQ object to export. The valid identifiers for the
internal description string are defined in the following table.

See Also
getText , toNumeric

Target
Identifier Description

%transpose Transposes the data while writing to the target. Reverses the meaning
of row and column counts.

Chapter 7 Function Reference — toVector

© National Instruments Corporation 7-355 HiQ Reference Manual

toVector

Purpose
Converts any numeric object to a vector object.

Usage
y = toVector(x)

Parameters

Comments
If the input is a matrix, the vector result is the rows of the matrix appended together. If the
input is a polynomial, the vector result is the coefficients of the polynomial.

See Also
toComplex , toInteger , toNumeric , toReal , toScalar , toText

Name Type Description

x Scalar, Vector,
Matrix, or
Polynomial

The object to convert.

y Vector The vector result.

Chapter 7 Function Reference — trace

HiQ Reference Manual 7-356 © National Instruments Corporation

trace

Purpose
Computes the trace of a matrix.

Usage
y = trace(A)

Parameters

Comments
The trace of a square matrix A is defined as the sum of the elements along the main
diagonal:

See Also
det , rank

Name Type Description

A Matrix A square nxn input matrix.

y Scalar The trace of the input matrix.

n n×

trace A() A i i

i 1=

n

∑=

Chapter 7 Function Reference — trans

© National Instruments Corporation 7-357 HiQ Reference Manual

trans

Purpose
Computes the transpose of a matrix.

Usage
y = trans(A)

Parameters

Comments
For real matrices, this function is equivalent to the notation A' . For complex matrices,
this function is equivalent to conj(A') .

For linear algebra operations, HiQ treats vectors as single-column matrices.

See Also
conj

Name Type Description

A Vector or Matrix The input vector or matrix.

y Matrix The transpose of the input (1xm matrix for
vector input, nxm matrix for matrix input.)

Chapter 7 Function Reference — tricomi

HiQ Reference Manual 7-358 © National Instruments Corporation

tricomi

Purpose
Computes the Tricomi function (associated confluent hypergeometric function).

Usage
y = tricomi(x, a, b)

Parameters

Comments
The Tricomi function (associated confluent hypergeometric function), U(x,a,b), is a solution
of the differential equation

See Also
gauss , kummer

Name Type Description

x Real Scalar The input argument.

a Real Scalar The first parameter of the Tricomi function.

b Real Scalar The second parameter of the Tricomi function.

y Real Scalar The value of the Tricomi function.

xd
2
w

dx
2

--------- b x–()dw
dx
------- aw–+ 0=

Chapter 7 Function Reference — updateViews

© National Instruments Corporation 7-359 HiQ Reference Manual

updateViews

Purpose
Updates the Notebook views of all objects or the Notebook views of a specified object.

Usage
updateViews(object)

Parameters

Comments
Only the views of the currently active notebook are updated. If you call updateViews
without an input, HiQ updates all views on the notebook. To update a view whenever the
underlying object changes, enable the Immediate Update property of the view in the Object
property page of the view.

Name Type Description

object Object The object to update. (Optional.)

Chapter 7 Function Reference — vanish

HiQ Reference Manual 7-360 © National Instruments Corporation

vanish

Purpose
Sets vector or matrix elements with values below a threshold value to zero.

Usage
Y = vanish(X , tolr)

Parameters

Comments
Because floating point arithmetic is not exact due to round-off errors, numeric object elements
can take on very small non-zero values. This function sets an element value to zero if the
initial value was less than a specified tolerance:

To limit round-off errors, choose a tolerance equal to a multiple of the precision of your
computer.

See Also
cond , isMatrix , sparsity

Name Type Description

X Vector or Matrix The input data.

tolr Real Scalar The tolerance to use to determine zero values.
(Optional.)

Y Vector or Matrix The output data.

x x if x tol>
0 if x tol≤

=

Chapter 7 Function Reference — var

© National Instruments Corporation 7-361 HiQ Reference Manual

var

Purpose
Computes the variance of a data sample.

Usage
y = var(x , xMean)

Parameters

Comments
The variance of an n-element data set x is defined by as

See Also
cor , cov , mean

Name Type Description

x Real Vector The input data set.

xMean Real Scalar The mean of the input data set. (Optional.)

y Real Scalar The variance of the input data set.

1
n 1–
------------ xi x–()2

i 1=

n

∑

Chapter 7 Function Reference — wait

HiQ Reference Manual 7-362 © National Instruments Corporation

wait

Purpose
Pauses script execution for a specified number of seconds.

Usage
wait(sec)

Parameters

Comments
The input time represents real time, not CPU time. Only the script containing the wait
function pauses execution. All other scripts continue running.

See Also
date , time , timer

Name Type Description

sec Real Scalar The number of seconds to wait.

Chapter 7 Function Reference — warning

© National Instruments Corporation 7-363 HiQ Reference Manual

warning

Purpose
Displays a warning dialog box.

Usage
action = warning(text)

Parameters

Comments
The warning function displays a warning dialog box containing the input text. The script
continues execution if the user clicks on the OK button but terminates if the user clicks on
theCancel button.

See Also
error , message

Name Type Description

text Text Warning message to display.

action Integer Scalar 0 if the OK button is selected. 1 if the Cancel
button is selected.

Chapter 7 Function Reference — weber

HiQ Reference Manual 7-364 © National Instruments Corporation

weber

Purpose
Computes the Weber function (D-parabolic cylinder function).

Usage
y = weber(x, r)

Parameters

Comments
The Weber function (D-parabolic cylinder function), Dν(x), is a solution of the differential
equation

See Also
struve

Name Type Description

x Real Scalar The input argument.

r Real Scalar The order of the Weber function.

y Real Scalar The value of the Weber function.

d
2
w

dx2
--------- x

2

4
---- v– 1

2
---–

 w– 0=

Chapter 7 Function Reference — write

© National Instruments Corporation 7-365 HiQ Reference Manual

write

Purpose
Writes bytes to an open file.

Usage
nBytes = write(fid, text)

Parameters

Comments
To write numeric data to a file, use the function toText to convert the numeric object to a
text object first.

See Also
open , read , writeLine

Name Type Description

fid Integer Scalar A valid file handle returned from open.

text Text The string of data to write.

nBytes Integer Scalar The number of bytes written to the file.

Chapter 7 Function Reference — writeLine

HiQ Reference Manual 7-366 © National Instruments Corporation

writeLine

Purpose
Writes lines to an open file.

Usage
writeLine(fid, text)

Parameters

Comments
The carriage return and line feed characters are automatically appended to the string written
to file. To write numeric data to a file, use the function toText to convert the numeric object
to a text object first.

See Also
open , readLine , write

Name Type Description

fid Integer Scalar A valid file handle returned from open.

text Text The lines of data to write.

Chapter 7 Function Reference — zeta

© National Instruments Corporation 7-367 HiQ Reference Manual

zeta

Purpose
Computes the zeta function.

Usage
y = zeta(x)

Parameters

Comments
The Riemann zeta function, ζ(x), is defined as

See Also
beta , gamma

Name Type Description

x Real Scalar The input argument.

y Real Scalar The value of the zeta function.

i
x–

i 1=

∞

∑

© National Instruments Corporation A-1 HiQ Reference Manual

A
HiQ Functions Listed
by Category

This appendix lists all HiQ built-in functions by category: Analysis,
File I/O, Graphics, and Utilities. The analysis functions are divided into
subcategories: approximation, basic math, derivatives, differential
equations, integral equations, integration, linear algebra, nonlinear
systems, optimization, polynomials, special functions, statistics, structures,
trigonometric, and utility functions.

Analysis

Table A-1. Analysis Functions

Analysis Category Function Name Purpose

Approximation fit Computes the parameters of a function that
best fit a data set.

fitEval Evaluates a fit at the given points.

interp Computes the interpolation of a data set.

interpEval Evaluates an interpolation at the given
points.

spline Computes the spline interpolation of a
data set.

splineEval Evaluates a spline at the given points.

Basic Math abs Computes the absolute value or complex
magnitude of a number.

arg Computes the argument (principle value or
phase angle) of a complex number.

cbrt Computes the cube root of a number.

ceil Rounds a number towards positive infinity.

Appendix A HiQ Functions Listed by Category

HiQ Reference Manual A-2 © National Instruments Corporation

Basic Math
(continued)

conj Computes the complex conjugate of a
number.

floor Rounds a number toward negative infinity.

gcd Computes the greatest common divisor of
two numbers or polynomials.

lcm Computes the least common multiple of a set
of integers.

pow Computes a scalar, matrix, or polynomial
raised to a power.

prod Computes the product of the elements in a
vector or matrix.

round Rounds a number to the nearest whole
number.

sign Computes the sign of a number.

sqrt Computes the square root of a number.

sum Computes the sum of the elements in a
vector or matrix.

Derivatives curl Computes the curl of a three-dimensional
vector.

derivative Computes the derivative of a function or
polynomial.

div Computes the divergence of a
three-dimensional vector field.

gradient Computes the gradient of a function.

hessian Computes the Hessian of a function.

jacobian Computes the Jacobian of a function.

laplacian Computes the Laplacian of a function.

partial Computes the partial derivative of a function.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

© National Instruments Corporation A-3 HiQ Reference Manual

Differential Equations ODEBVP Solves a set of ordinary differential
equations given boundary conditions.

ODEIVP Solves a set of ordinary differential
equations given initial conditions.

Integral Functions integEqn Solves a system of integral equations.

Integration integrate Computes the integral of a function,
polynomial, or data set.

Linear Algebra bandwidth Computes the lower and upper bandwidths
of a matrix.

basis Creates the Kronecker or Heaviside basis
vector.

choleskyD Computes the Cholesky decomposition of a
symmetric, positive definite matrix.

compose Computes the composition of two
polynomials or permutations.

cond Computes the condition number of a matrix.

convert Converts a numeric object to another object
type or converts the structure of a matrix
object.

cross Computes the cross product of two
three-element vectors.

det Computes the determinant of a matrix.

diag Creates a diagonal matrix or extracts
diagonal elements from a matrix.

dim Returns the dimensions of a vector or matrix.

dist Computes the distance between two vectors
or matrices.

dot Computes the dot product of two vectors.

eigen Computes the eigenvalues and eigenvectors
of a matrix.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

HiQ Reference Manual A-4 © National Instruments Corporation

Linear Algebra
(continued)

eigenDom Computes the dominant eigenvalue and
eigenvector of a matrix.

eigenSel Computes the eigenvalue closest to a
specified value and its corresponding
eigenvector.

fill Creates a vector or matrix initialized with a
value.

givens Computes the Givens rotation parameters of
a two-element vector.

hessenbergD Computes the Hessenberg decomposition
of a matrix.

householder Computes the Householder reflection of a
vector.

inv Computes the inverse of a matrix,
polynomial, or permutation.

LUD Computes the LU decomposition of a
matrix.

norm Computes the norm of a vector or matrix.

ones Creates a vector or matrix with all elements
set to one.

permu Permutes a vector or matrix from the left
(row permutation) and/or right (column
permutation).

pinv Computes the pseudo-inverse of a matrix.

QRD Computes the QR decomposition of a
matrix.

rank Computes the rank of a matrix.

reflect Computes the Householder reflection of a
vector or matrix.

rotate Computes the rotation of a vector or matrix
through an angle.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

© National Instruments Corporation A-5 HiQ Reference Manual

Linear Algebra
(continued)

schurD Computes the Schur decomposition of a
matrix.

seq Creates a sequence of scalars or vectors.

solve Solves a linear or nonlinear system of
equations.

sparsity Computes the percentage of zero valued
elements in a vector or matrix.

SV Computes the singular values of a matrix.

SVD Computes the singular value decomposition
of a matrix.

symD Computes the symmetric indefinite
decomposition (LTL') of a matrix.

trace Computes the trace of a matrix.

trans Computes the transpose of a matrix.

vanish Sets vector or matrix elements with values
below a threshold value to zero.

Nonlinear Systems root Computes a single root of a function or
polynomial.

roots Computes the roots of a function or
polynomial.

solve Solves a linear or nonlinear system of
equations.

Optimization optimize Finds the minimum value of a linear or
nonlinear equation.

Polynomials compose Computes the composition of two
polynomials or permutations.

createPoly Creates a polynomial.

degree Computes the effective degree of a
polynomial

divide Computes the ratio of two polynomials.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

HiQ Reference Manual A-6 © National Instruments Corporation

Polynomials
(continued)

eval Evaluates a polynomial or single-valued
function at the given input value.

evalPoly Evaluates a polynomial.

inv Computes the inverse of a matrix,
polynomial, or permutation.

Special Functions airy Computes the Airy functions Ai and Bi.

besselI Computes the modified Bessel function of
the first kind.

besselJ Computes the Bessel function of the first
kind.

besselJs Computes the spherical Bessel function of
the first kind.

besselK Computes the modified Bessel function of
the second kind.

besselY Computes the Bessel function of the
second kind.

besselYs Computes the spherical Bessel function of
the second kind.

beta Computes the beta function.

coshI Computes the hyperbolic cosine integral
function.

cosI Computes the cosine integral function.

dawson Computes the Dawson integral.

digamma Computes the digamma (psi) function.

diln Computes the dilogarithm function
(Spence’s Integral).

elliptic1 Computes the elliptic integral of the
first kind.

elliptic2 Computes the elliptic integral of the
second kind.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

© National Instruments Corporation A-7 HiQ Reference Manual

Special Functions
(continued)

ellipticJ Computes the Jacobi elliptic functions.

exp Computes the exponential function.

expI Computes the exponential integral function.

fact Computes the factorial of a number.

fCosI Computes the Fresnel cosine integral
function.

fSinI Computes the Fresnel sine integral function.

gamma Computes the gamma function.

gammaC Computes the complementary incomplete
gamma function.

gauss Computes the Gauss hypergeometric
function.

guder Computes the gudermannian function.

guderInv Computes the inverse of the gudermannian
function.

kelvinI Computes the complex Kelvin function of
the first kind.

kelvinK Computes the complex Kelvin function of
the second kind.

kummer Computes the Kummer function (confluent
hypergeometric function).

ln Computes the natural logarithm of a number
(logarithm to the base e).

log Computes the logarithm of a number to a
given base.

sinhI Computes the hyperbolic sine integral
function.

sinI Computes the sine integral function.

stirling Computes the Stirling approximation to the
gamma function.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

HiQ Reference Manual A-8 © National Instruments Corporation

Special Functions
(continued)

struve Computes the struve function.

tricomi Computes the Tricomi function (associated
confluent hypergeometric function).

weber Computes the Weber function (D-parabolic
cylinder function).

zeta Computes the zeta function.

Statistics avgDev Computes the average deviation of a data
sample.

CDF Computes the cumulative distribution
function.

cor Computes the correlation of two data
samples.

cov Computes the covariance of two data
samples.

erf Computes the error function.

erfc Computes the complementary error
function.

histogram Computes the histogram of a data set.

kurtosis Computes the kurtosis of a data sample.

mean Computes the arithmetic mean (average) of a
data sample.

median Computes the median of a data sample.

moment Computes the first moment of a data set.

PDF Computes the probability density function.

quartile Computes the value at the upper end of a
quartile of a data set.

random Generates a random number.

range Computes the range of a data set.

seed Seeds the random number generator.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

© National Instruments Corporation A-9 HiQ Reference Manual

Statistics
(continued)

skew Computes the skew of a data sample.

stdDev Computes the standard deviation of a data
sample.

var Computes the variance of a data sample.

Structures createMatrix Creates a variety of special matrices.

createVector Creates a variety of special vectors.

fill Creates a vector or matrix initialized with a
value.

ident Creates an identity matrix.

ones Creates a vector or matrix with all elements
set to one.

seq Creates a sequence of scalars or vectors.

Trigonometric arccos Computes the inverse cosine.

arccosh Computes the inverse hyperbolic cosine.

arccot Computes the inverse cotangent.

arccoth Computes the inverse hyperbolic cotangent.

arccsc Computes the inverse cosecant.

arccsch Computes the inverse hyperbolic cosecant.

arcsec Computes the inverse secant.

arcsech Computes the inverse hyperbolic secant.

arcsin Computes the inverse sine.

arcsinh Computes the inverse hyperbolic sine.

arctan Computes the inverse tangent.

arctanh Computes the inverse hyperbolic tangent.

cos Computes the cosine.

cosh Computes the hyperbolic cosine.

cot Computes the cotangent.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

HiQ Reference Manual A-10 © National Instruments Corporation

Trigonometric
(continued)

coth Computes the hyperbolic cotangent.

csc Computes the cosecant.

csch Computes the hyperbolic cosecant.

sec Computes the secant.

sech Computes the hyperbolic secant.

sin Computes the sine.

sinh Computes the hyperbolic sine.

tan Computes the tangent.

tanh Computes the hyperbolic tangent.

Utility compose Computes the composition of two
polynomials or permutations.

find Finds the occurrences of an element in a
vector or matrix.

fPart Computes the fractional part of a number.

iPart Computes the integer part (whole part) of a
number.

isMatrix Queries the attributes of a matrix object.

max Computes the maximum value of a data set.

min Computes the minimum value of a data set.

random Generates a random number.

remove Removes elements of a vector or matrix.

replace Replaces the elements of a vector or matrix.

seed Seeds the random number generator.

sort Sorts a data set.

subrange Returns a subrange from a vector or matrix.

toComplex Converts any numeric type to complex.

toInteger Creates an integer numeric object.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

© National Instruments Corporation A-11 HiQ Reference Manual

File I/O

Utility
(continued)

toMatrix Converts any numeric object to a matrix
object.

toNumeric Creates a numeric object from a text object.

toReal Converts any numeric type to real.

toScalar Converts any numeric object to a scalar
object.

toText Creates a text object from a numeric object.

toVector Converts any numeric object to a vector
object.

Table A-2. File I/O Functions

Function Name Purpose

close Closes an open file.

export Exports data to a file.

flush Flushes the contents of the file buffer to disk.

getFilePos Returns the current position of the file
pointer.

getFileSize Returns the size of a file.

import Imports data from a file.

isEOF Checks whether the file pointer is at the end
of a file.

open Opens a file.

read Reads bytes from an open file.

readLine Reads lines from an open file.

renameFile Renames a file.

setFilePos Sets the position of a file pointer.

Table A-1. Analysis Functions (Continued)

Analysis Category Function Name Purpose

Appendix A HiQ Functions Listed by Category

HiQ Reference Manual A-12 © National Instruments Corporation

Graphics

Utility

write Writes bytes to an open file.

writeLine Writes lines to an open file.

Table A-3. Graphics Functions

Function Name Purpose

addPlot Adds a plot to a graph.

changePlotData Changes the data associated with a plot
object without changing the attributes of the
plot object.

createGraph Creates a new 2D or 3D graph.

createPlot Creates a new 2D or 3D plot object.

removePlot Removes a plot from a graph.

Table A-4. Utility Functions

Function Name Purpose

clearLog Clears the Log Window.

createInterface Creates an ActiveX object.

createView Creates a view of an object in a separate
window.

date Returns the current date.

deleteFile Deletes a file from hard disk.

error Displays an error dialog box and terminates
a HiQ-Script.

Table A-2. File I/O Functions (Continued)

Function Name Purpose

Appendix A HiQ Functions Listed by Category

© National Instruments Corporation A-13 HiQ Reference Manual

getFileName Displays the file dialog box prompting for an
existing filename.

getNumber Displays a dialog box prompting for a
numeric object.

getText Displays a dialog box prompting for a text
object.

logMessage Displays a message in the Log Window.

message Displays a message dialog box.

putFileName Displays the file dialog box prompting for a
new or existing filename.

saveLog Saves the contents of the Log Window
to a file.

time Returns the current time.

timer Returns the time elapsed since the current
session of HiQ began.

updateViews Updates the Notebook views of all objects or
the Notebook views of a specified object.

wait Pauses script execution for a specified
number of seconds.

warning Displays a warning dialog box.

Table A-4. Utility Functions (Continued)

Function Name Purpose

© National Instruments Corporation B-1 HiQ Reference Manual

B
HiQ Constants

This appendix lists and describes the HiQ property constants, HiQ-Script
language constants, and built-in function constants.

Property Constants

Table B-1. Object Type Constants

Constant Description

<ActiveXControl> ActiveX control

<ActiveXInterface> Dispatch interface to an ActiveX
automation server

<ActiveXObject> ActiveX object

<BIF> Built-in function

<color> HiQ color

<complex> Complex scalar

<complexMatrix> Complex matrix

<complexPoly> Complex polynomial

<complexVector> Complex vector

<constant> HiQ constant

 HiQ font

<graph2D> 2D Graph

<graph3D> 3D Graph

<integer> Integer scalar

<integerMatrix> Integer matrix

<integerVector> Integer vector

Appendix B HiQ Constants

HiQ Reference Manual B-2 © National Instruments Corporation

<matrix> Any matrix

<plot2D> 2D Plot

<plot3D> 3D Plot

<real> Real scalar

<realMatrix> Real matrix

<realPoly> Real polynomial

<realVector> Real vector

<scalar> Any scalar

<script> Script

<text> Text

<untyped> Not yet typed

<userFct> User function

<vector> Any vector

Table B-2. Border Style Constants

Constant Description

<determinant> Determinant

<embossed> Embossed

<grooved> Grooved

<line> Simple line

<none> No border

<raised> 3D raised

<recessed> 3D recessed

<thickline> Simple thick line

Table B-1. Object Type Constants (Continued)

Constant Description

Appendix B HiQ Constants

© National Instruments Corporation B-3 HiQ Reference Manual

Table B-3. Plot Style Constants

Constant Description

<contour> Contour lines (3D only)

<hiddenLine> Hidden line surface (3D only)

<horizontalBar> Horizontal bar drawn from zero
(2D only)

<line> Line without any point markers

<linePoint> Line with point markers

<point> Points without a line connecting
them

<surface> Surface (3D only)

<surfaceContour> Surface with contour lines
(3D only)

<surfaceLine> Surface with element edges shown
(3D only)

<surfaceNormal> Surface with a normal line shown
(3D only)

<verticalBar> Vertical bar drawn from zero
(2D only)

Table B-4. Fill Style Constants

Constant Description

<flat> Surface polygons filled using flat
shading

<smooth> Surface polygons filled using
Gouraud shading

Appendix B HiQ Constants

HiQ Reference Manual B-4 © National Instruments Corporation

Table B-5. Line Style Constants

Constant Description

<dashLine> Segmented line with longer
segments

<dotDashLine> Segmented line with alternating
short and long segments

<dotLine> Segmented line with very short
segments

<solidLine> Solid line

Table B-6. Point Style Constants

Constant Description

<asterisk> Asterisk (*)

<boldX> Bold x

<diamond> Diamond

<emptyCircle> Empty circle

<emptySquare> Empty square

<solidCircle> Filled circle

<solidCube> Solid cube

<solidSphere> Solid sphere

<solidSquare> Filled square

<wireframeCube> Wireframe cube

<wireframeSphere> Wireframe sphere

Appendix B HiQ Constants

© National Instruments Corporation B-5 HiQ Reference Manual

Table B-7. Coordinate System Constants

Constant Description

<cartesian> Cartesian

<polar> Polar (2D only)

<cylindrical> Cylindrical (3D only)

<spherical> Spherical (3D only)

Table B-8. Axis Scaling Constants

Constant Description

<auto> Automatic axis ranging

<linear> Linear

<log> Logarithmic

<manual> Manual axis ranging

Table B-9. Contour Constants

Constant Description

<magnitude> Generate contours with
magnitude data

<x> Generate contours with X data

<y> Generate contours with Y data

<z> Generate contours with Z data

Table B-10. Projection Style Constants

Constant Description

<orthographic> Orthographic projection

<perspective> Perspective projection

Appendix B HiQ Constants

HiQ Reference Manual B-6 © National Instruments Corporation

Table B-11. View Mode Constants

Constant Description

<viewUserDefined> View angle is specified by the
.viewLongitude and
.viewLatitude attributes

<viewXYPlane> View angle looks toward the XY
plane in the negative Z direction

<viewXZPlane> View angle looks toward the XZ
plane in the positive Y direction

<viewYZPlane> View angle looks toward the YZ
plane in the negative X direction

Table B-12. Lighting Attenuation Constants

Constant Description

<linear> Intensity decreases as a linear
function of distance

<none> No attenuation

<quadratic> Intensity decreases as a quadratic
function of distance

Table B-13. Color Map Constants

Constant Description

<grayscale> Color map is a grayscale

<none> No color map

<shaded> Color map based on varying
shades of fill color

<spectrum> Color map is a color spectrum

Appendix B HiQ Constants

© National Instruments Corporation B-7 HiQ Reference Manual

Table B-14. Line Interpolation Constants

Constant Description

<cubicspline> Cubic spline interpolation
between points

<linear> Linear interpolation between
points

Table B-15. Numeric Formatting Constants

Constant Description

<binary> Binary formatting for integer
objects

<binaryB> Binary formatting with appended
b for integer objects

<caret> Polynomial exponent style ^

<decimal> Decimal formatting

<decimal> Decimal notation

<degrees> Polar representation in degrees for
complex objects

<engineering> Engineering notation

<fortran> Polynomial exponent style **

<gradians> Polar representation in gradians
for complex objects

<hexadecimal0x> Hexadecimal formatting with
prepended 0x for integer objects

<hexadecimal> Hexadecimal formatting for
integer objects

<hexadecimalDollar> Hexadecimal formatting with
prepended $ for integer objects

<hexadecimalH> Hexadecimal formatting with
appended h for integer objects

<left> Left justification of the number
in the cell

Appendix B HiQ Constants

HiQ Reference Manual B-8 © National Instruments Corporation

Language Constants

<octal0> Octal formatting with prepended 0
for integer objects

<octal> Octal formatting for integer
objects

<octalo> Octal formatting with appended o
for integer objects

<pair> Cartesian representation for
complex objects using ordered
pairs

<radians> Polar representation in radians for
complex objects

<raised> Polynomial exponent style
superscript

<right> Right justification of the number
in the cell

<scientific> Scientific notation

<sumI> Cartesian representation for
complex objects using i

<sumJ> Cartesian representation for
complex objects using j

Table B-16. Numeric Constants

Numeric Constants Value

<catalan> 0.9159655941772190

<e> e (2.71828182845904523536)

<epsilon> Machine epsilon

<euler> γ (.5772156649015328768)

<i> sqrt(–1)

Table B-15. Numeric Formatting Constants (Continued)

Constant Description

Appendix B HiQ Constants

© National Instruments Corporation B-9 HiQ Reference Manual

<INF> Positive infinity

<maxInt> Largest positive integer

<maxLn> ln(<MaxReal>)

<maxReal> Largest positive normalized real
number

<minInt> Smallest negative integer

<minLn> ln(<MinReal>)

<minReal> Smallest positive normalized real
number

<NAN> Not a number

<NINF> Negative infinity –<INF>

<pi> π (3.14159265358979323846)

<PINF> Positive infinity

Table B-17. Text Constants

Text Constants Value

CR Carriage return character

CRLF Carriage return and linefeed
characters

LF Linefeed character

tab Tab character

Table B-16. Numeric Constants (Continued)

Numeric Constants Value

Appendix B HiQ Constants

HiQ Reference Manual B-10 © National Instruments Corporation

Table B-18. Color Constants

Color Constants Value

<Black> {color: 0, 0, 0}

<Blue> {color: 0, 0, 128}

<Brown> {color: 128, 64, 0}

<Cyan> {color: 0, 128, 128}

<Gray>
<Grey>

{color: 128, 128, 128}

<Green> {color: 0, 128, 0}

<LtBlue> {color: 0, 0, 255}

<LtCyan> {color: 0, 255, 255}

<LtGray>
<LtGrey>

{color: 192, 192, 192}

<LtGreen> {color: 0, 255, 0}

<LtMagenta> {color: 255, 0, 255}

<LtRed> {color: 255, 0, 0}

<Magenta> {color: 128, 0, 128}

<Orange> {color: 255, 128, 0}

<Pink> {color: 255, 128, 255}

<Red> {color: 192, 0, 0}

<White> {color: 255, 255, 255}

<Yellow> {color: 255, 255, 0}

Appendix B HiQ Constants

© National Instruments Corporation B-11 HiQ Reference Manual

Function Constants
Table B-19. Function Constants

Function Constant

basis <heaviside>

<kronecker>

CDF <beta>

<binomial>

<cauchy>

<chiSq>

<exponential>

<f>

<gamma>

<geometric>

<negBinomial>

<normal>

<poisson>

<student>

<weibull>

cond <frob>

<L1>

<L2>

<L2sq>

convert <band>

<hermitian>

<lowerTri>

<rect>

<symmetric>

<upperTri>

Appendix B HiQ Constants

HiQ Reference Manual B-12 © National Instruments Corporation

createGraph <graph2D>

<graph3D>

createMatrix <band>

<bordered>

<dingdong>

<fill>

<frank>

<gram>

<hankel>

<hilbert>

<ident>

<kahanL>

<kahanU>

<lowerTri>

<moler>

<random>

<rect>

<seq>

<symmetric>

<toeplitz>

<upperTri>

<vandermonde>

<wilkMinus>

<wilkPlus>

Table B-19. Function Constants (Continued)

Function Constant

Appendix B HiQ Constants

© National Instruments Corporation B-13 HiQ Reference Manual

createPoly <aLaguerre>

<ascending>

<chebyshev1>

<chebyshev2>

<descending>

<fill>

<gegenbauer>

<hermite>

<laguerre>

<legendre>

createVector <heaviside>

<kronecker>

<random>

<seq>

createView false

true

curl <central>

<extended>

<forward>

date <long>

<short>

derivative <central>

<extended>

<forward>

Table B-19. Function Constants (Continued)

Function Constant

Appendix B HiQ Constants

HiQ Reference Manual B-14 © National Instruments Corporation

dist

<frob>

<L1>

<L2>

<L2sq>

<Lp>

<Lw>

div <central>

<extended>

<forward>

eigen

<hermitian>

<symmetric>

eigenDom <hermitian>

<symmetric>

evalPoly <aLaguerre>

<chebyshev1>

<chebyshev2>

<hermite>

<jacobi>

<laguerre>

<legendre>

find <column>

<GE>

<GT>

<LE>

<LT>

<NE>

<row>

Table B-19. Function Constants (Continued)

Function Constant

Appendix B HiQ Constants

© National Instruments Corporation B-15 HiQ Reference Manual

fit <conjGrad>

<gauss>

<givensDefRank>

<givensFullRank>

<houseDefRank>

<houseFullRank>

<line>

<marquardt>

<poly>

<quasiNewton>

<SVD>

fitEval <exp>

<gauss>

<line>

gradient <central>

<extended>

<forward>

hessenbergD

<givens>

<house>

hessian

<central>

<forward>

integEqn <Fredholm2>

<Volterra1>

<Volterra2>

Table B-19. Function Constants (Continued)

Function Constant

Appendix B HiQ Constants

HiQ Reference Manual B-16 © National Instruments Corporation

integrate

<adSimpson>

<gauss>

<hermite>

<laguerre>

<logSing>

<parabolic>

<simpson>

<spline>

<trapezoid>

interp <poly>

isMatrix <allReal>

<allZero>

<colDiagDom>

<diagonal>

<GE>

<GT>

<hermitian>

<LE>

<lowerTri>

<LT>

<negDef>

<orthogonal>

<posDef>

<rowDiagdom>

<square>

<symmetric>

<unitary>

<upperTri>

Table B-19. Function Constants (Continued)

Function Constant

Appendix B HiQ Constants

© National Instruments Corporation B-17 HiQ Reference Manual

jacobian <central>

<forward>

laplacian

<central>

<forward>

logMessage <append>

<newLine>

norm <frob>

<L1>

<L2>

<L2sq>

<Lp>

<Lw>

ODEBVP <ABM>

<BDF>

<BDF1>

<BS>

<cc>

<fixed>

<linear>

<marching>

<nonlinear>

<RKF>

<simple>

<variable>

Table B-19. Function Constants (Continued)

Function Constant

Appendix B HiQ Constants

HiQ Reference Manual B-18 © National Instruments Corporation

ODEIVP <ABM>

<BDF>

<BS>

<cc>

<fixed>

<RKF>

<variable>

optimize <conjGrad>

<marquardt>

<nelderMead>

<quasiNewton>

<quasiNewton>

partial <central>

<extended>

<forward>

PDF

<beta>

<binomial>

<cauchy>

<chiSq>

<exponential>

<f>

<gamma>

<geometric>

<negBinomial>

<normal>

<poisson>

<student>

<weibull>

Table B-19. Function Constants (Continued)

Function Constant

Appendix B HiQ Constants

© National Instruments Corporation B-19 HiQ Reference Manual

QRD <fastGivens>

<givens>

<house>

<mGS>

range <quartile>

random

<normal>

<uniform>

replace <column>

<GE>

<GT>

<LE>

<LT>

<NE>

<row>

root

<muller>

<newton>

setFilePos <seekFromCurrent>

<seekFromEnd>

<seekFromStart>

solve <choleskyD>

<leastSq>

<linearSys>

<newton>

<quasiNewton>

<symD>

<toeplitz>

<vandermonde>

Table B-19. Function Constants (Continued)

Function Constant

Appendix B HiQ Constants

HiQ Reference Manual B-20 © National Instruments Corporation

sort <ascending>

<bucketSort>

<descending>

<heapSort>

<insertionSort>

<keepTies>

<noTies>

<quickSort>

<shellSort>

spline

<cubic>

<natcubic>

splineEval

<cubic>

<natcubic>

time <local>

<utc>

Table B-19. Function Constants (Continued)

Function Constant

© National Instruments Corporation C-1 HiQ Reference Manual

C
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
questions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also download
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.

HiQ Reference Manual C-2 © National Instruments Corporation

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) __

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter __________________________

Mouse ___yes ___no Other adapters installed_______________________________________

Hard disk capacity _____MB Brand___

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: ___

HiQ Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
questions more efficiently.

National Instruments Products
Hardware revision ___

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Programming choice ___

National Instruments software __

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Other Products
Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: HiQ™ Reference Manual

Edition Date: April 1998

Part Number: 321885A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) _______________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

© National Instruments Corporation G-1 HiQ Reference Manual

Glossary

Prefix Meanings Value

p- pico 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

A

ActiveX
(Microsoft ActiveX)

A programming system and user interface that lets you work with
interactive objects. Formerly called OLE.

ActiveX control A standard software tool that adds additional functionality to any
compatible ActiveX container.

ActiveX Control object An object in HiQ that represents an inserted ActiveX control.

ActiveX embedded
object

An object placed into a container and unconnected to any other object or
application. See also embedded.

ActiveX Interface object An object in HiQ that represents an interface to an ActiveX automation
server application. See the createInterface function in Chapter 7,
Function Reference.

ActiveX linked object An object placed into a container and connected to another object or
application in the same container or in a separate container. See also linked.

ActiveX object An object in HiQ that represents an inserted ActiveX object.

argument See parameter.

Glossary

HiQ Reference Manual G-2 © National Instruments Corporation

assignment A script statement that sets a value to a variable.

attribute See property.

B

built-in function One of many programming utilities in HiQ-Script that perform analysis,
graphical, or utility operations.

C

caret See insertion point.

cell In a matrix or vector, the intersection of a row and column that contains a
numerical value.

Color object A HiQ object that sets the color attributes of graphs and plots.

Command Window See HiQ Command Window.

comment An explanatory line or portion of a line in HiQ-Script.

compiled script A HiQ object containing HiQ-Script language that has been converted to
code that a computer uses to execute the program.

ComponentWorks A collection of 32-bit ActiveX controls designed for building virtual
instrumentation systems.

constant A predefined value in HiQ-Script.

cursor The pointer or other image that displays on screen to show the location of
your mouse, trackball, or other pointing device.

D

data type See numeric type.

debug To check and correct invalid code in a HiQ script in order to eliminate errors
during the compilation or execution of the script.

declaration A HiQ-Script statement that defines the scope of variables. Can be either
project or local.

Glossary

© National Instruments Corporation G-3 HiQ Reference Manual

dialog box A window containing a message, interactive options, and buttons.

drag and drop To move an object to a specific location, using the mouse to click on, drag,
and release the object. Depending on the location of release, a specific
action can occur.

E

embedded Inserted into a container object and unconnected to any other object or
application. Compare this term to linked. See also ActiveX embedded
object.

error message An information box that appears when HiQ cannot complete an action due
to an internal error, compile error, run-time error, or user error.

Explorer See HiQ Explorer.

expression A mathematical operator and its operands.

F

Font object A HiQ object type used to set the font attributes of graphs and plots.

For Loop A statement or block of statements that repeats until a condition is matched.

function A block of code that performs a specific task in HiQ-Script; can be a HiQ
built-in function or a user-defined function.

function call Specific HiQ-Script syntax that calls a user or built-in function with given
parameters.

Function object An object that represents the executable pseudocode of a complied Script
object.

G

grab handle A site on a selected object that you click on and drag to move, size, or
reshape the object.

Graph object The HiQ object that contains a two-dimensional or three-dimensional
collection of plots. See plot.

Glossary

HiQ Reference Manual G-4 © National Instruments Corporation

H

handle See grab handle.

HiQ Command Window An intuitive window where you type HiQ-Script to get immediate results.

HiQ Constant object A HiQ object that represents a constant in HiQ-Script.

HiQ Explorer An interactive window displaying the objects, sections, and pages of an
open Notebook.

HiQ Log Window A window to which you can post messages from HiQ-Script.

HiQ Object Browser A browser window in which you can view all the interfaces for ActiveX
servers, objects, and controls installed on your computer.

HiQ-Script An intuitive programming language for mathematics.

HiQ Tools toolbar Part of the HiQ user interface that contains icons for objects you can place
in a Notebook. Depending on your preference, the toolbar can appear on
any edge of the interface, or as a floating palette.

I

If-Then-Else statement Flow control construct that executes a statement or block of statements only
when a condition is true.

initialization In HiQ-Script, a designated syntax which creates a particular type of object,
for example, vector, matrix, color, and others.

insertion point The location where text will be inserted (also referred to as the caret).

K

keyword A reserved word in HiQ Script, such as if , then , or while , that is used for
constructing specific types of programming statements.

Glossary

© National Instruments Corporation G-5 HiQ Reference Manual

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench. Program
development application based on the programming language G used
commonly for test and measurement applications.

LabWindows\CVI An integrated ANSI C environment designed for engineers and scientists
creating virtual instrumentation applications.

linked Inserted into a container object and connected with another object or
application. Compare this term to embedded. See also ActiveX linked
object.

local Describes the scope of an object. An object with local scope is not
associated with the Notebook.

Log Window See HiQ Log Window.

loop A statement in HiQ-Script consisting of keywords and nested statements
that performs a repetitive function. Also known as an iteration statement.

M

MATLAB Third-party software product for programming and working with data.

Matrix object A HiQ numeric object containing an array of elements with rows and
columns. See vector.

message box A secondary window that appears containing information about the status
of a HiQ operation. See dialog box.

N

Notebook The workspace in HiQ that stores, organizes, and displays all the
components of an analysis and visualization problem.

Numeric object A HiQ object type that is defined in terms of a numeric type (integer, real,
or complex) and an object type (matrix, vector, polynomial, or scalar).

numeric type One of three types of a numeric object (integer, real, or complex).

Glossary

HiQ Reference Manual G-6 © National Instruments Corporation

O

object An entity in a HiQ Notebook that contains data of a specific type, for
example, numeric, graphic, text, or HiQ-Script. Objects work together in a
Notebook to generate and display solutions to analysis and visualization
problems. Objects are always stored in a Notebook, but are not always
visible on a Notebook page. See object view.

Object Browser See HiQ Object Browser.

Object List A window in HiQ that displays all the objects in a HiQ Notebook.

object view A HiQ object that is visible on a Notebook page.

OLE (Microsoft OLE) Object Linking and Embedding. A programming system and user interface
that lets you work with interactive objects. See ActiveX.

operand An object (or objects) modified by an operator.

operator Code in HiQ-Script that is specific to basic mathematical operations and
structure of HiQ-Script language. Often represented as a symbol, for
example, "/ " represents division.

P

parameter An independent variable passed to a user-defined or built-in function call in
a parameter list.

Plot object A HiQ object type that graphically represents a two-dimensional or
three-dimensional function or data set used in conjunction with a graph
object. See graph.

Polynomial object A HiQ numeric object represented by an equation in the polynomial form
axn + bxn-1+cxn-2 + ...

pop-up menu A context-sensitive menu that you can access by right clicking with your
mouse on an object or on the Notebook.

Problem Solver A HiQ Notebook containing objects, including HiQ-Script, that allows you
to interactively perform analysis of data and display results for a broad class
of problems. For example, the expression evaluator problem solver can
display the results of any expression.

Glossary

© National Instruments Corporation G-7 HiQ Reference Manual

project Describes the scope of an object. An object with project scope is saved with
the Notebook.

Properties dialog box A window in HiQ with tabbed pages (property pages) where you can
quickly set a wide variety of attributes for a given object.

property Attributes of a HiQ object. Examples include the color of a plot, the size of
a matrix, and the type of any object.

property page A tabbed subsection of a property dialog box containing a collection of
object attributes.

R

Return statement A statement that causes the function to be exited. If an expression is
specified, the expression is returned to the calling function.

S

Scalar object A HiQ numeric object represented as a number. See vector and matrix.

scope In HiQ-Script, a HiQ-object declaration that specifies whether the object is
available to the entire Notebook (project) or is temporarily available (local).

script A block of code that performs a certain task. See compiled script. In HiQ,
a block of programming code that can perform mathematical analysis and
display its output textually, graphically, and numerically.

Script object A HiQ object type containing HiQ-Script and from which you compile and
execute your program.

section tabs An organizing tool in a HiQ Notebook that lets you label and quickly access
different parts of your Notebook.

Select statement A statement that selects a group of statements to be executed based on the
evaluation of an expression.

selection handle A graphical control point of an object that provides direct manipulation
support for operations of that object, such as moving, sizing, or scaling.

selection tool The mouse cursor in HiQ shaped like a standard pointer arrow that lets you
select, move, and manipulate objects on the Notebook.

Glossary

HiQ Reference Manual G-8 © National Instruments Corporation

shortcut key A key or combination of keys that you press to invoke a command.

Standard toolbar Site on the user interface of HiQ that contains basic utility tools, for
example, Save, Open, Cut, Paste, and, Print. Depending on your preference,
the toolbar can appear on any edge of the interface, or as a floating window.

statement In HiQ-Script, a line of code consisting of various keywords, functions,
and/or operators that performs a certain task.

status bar A region, usually the bottom of a window, containing information about
HiQ and any selected object.

symbol The name for objects in HiQ for the Macintosh.

T

Text object A HiQ object type where you can enter and edit text.

toolbar Site on an application interface that contains various buttons and other
controls. Depending on your preference, a toolbar can appear on any edge
of the interface, or a floating window.

tooltip A small, descriptive pop-up window that appears when you position the
mouse cursor over a toolbar icon.

type A classification of an object based on its characteristics, behavior, and
attributes.

U

Untyped object A HiQ object that has not been assigned a value.

user-defined function A function that a user creates in HiQ-Script to perform customized
analysis, graphical, or utility operations.

V

Vector object A HiQ numeric object containing an array with one row or column.
Compare with matrix.

Glossary

© National Instruments Corporation G-9 HiQ Reference Manual

W

While Loop A statement or block of statements that executes while a particular
condition is true. The condition is evaluated before the statement or block
of statements is executed.

© National Instruments Corporation I-1 HiQ Reference Manual

Index

Symbols and Numbers
.^ .** (elementwise exponentiation)

operator, 6-9
^ ** (exponentiation) operator, 6-3
+ (addition) operator, 6-7
- (additive inverse) operator, 6-13
&& (and) operator, 5-17
` (conjugate transpose) operator, 6-12
/ (division) operator, 6-5
.+ (elementwise addition) operator, 6-11
./ (elementwise division) operator, 6-10
.\ (elementwise left division) operator, 6-10
.% (elementwise mod) operator, 6-10
.* (elementwise multiplication) operator, 6-9
.- (elementwise subtraction) operator, 6-11
== (equal to) operator, 5-17
> (greater than) operator, 5-17
>= (greater than or equal to) operator, 5-17
\ (left division) operator, 6-5
< (less than) operator, 5-17
<= (less than or equal to) operator, 5-17
! (logical NOT) operator, 5-17
!= (not equal to) operator, 5-17
% (mod) operator, 6-6
* (multiplication) operator, 6-4
|| (or) operator, 5-17
- (subtraction) operator, 6-8
2D graphs. See two-dimensional graphs.
3D graphs. See three-dimensional graphs.
4D plots, creating, 3-11

A
abs function, 7-1
accelerated OpenGL graphics adapters,

3-12 to 3-13

ActiveX connectivity, 1-1 to 1-24
ActiveX technology, 1-1 to 1-2
automation errors (table), 1-22 to 1-23
communicating with ActiveX servers,

objects, and controls, 1-3 to 1-7
displaying HiQ ActiveX Object

Browser, 1-3 to 1-5
using HiQ ActiveX Object Browser,

1-5 to 1-7
controlling HiQ from other applications,

1-13 to 1-21
Application object, 1-13 to 1-15
Notebook object, 1-15 to 1-22

controlling other applications from HiQ,
1-12 to 1-13

embedding HiQ Notebook in other
applications, 1-11 to 1-12

embedding objects into HiQ Notebook,
1-8 to 1-11

procedure for, 1-8 to 1-9
programmatically modifying

embedded Word document,
1-10 to 1-11

using ActiveX controls in HiQ, 1-23 to 1-24
ActiveX Control objects, 4-32
ActiveX Interface objects, 4-33
ActiveX objects, 4-31
ActiveX technology, 1-1 to 1-2

automation client, 1-2
automation server, 1-2
controls container, 1-2
document container, 1-1 to 1-3
document server, 1-1

Adams-Bashforth-Mouton algorithm,
7-239, 7-242

addition (+) operator, 6-7
addition operator, elementwise (.+), 6-11
additive inverse (-) operator, 6-13

Index

HiQ Reference Manual I-2 © National Instruments Corporation

addPlot function, 7-2 to 7-4
airy function, 7-5 to 7-6
algebraic binary operators, 6-3 to 6-11

addition (+), 6-7
division (/), 6-5
elementwise addition (.+), 6-11
elementwise division (./), 6-10
elementwise exponentiation (.^ .**), 6-9
elementwise left division (.\), 6-10
elementwise mod (.%), 6-10
elementwise multiplication (.*), 6-9
elementwise subtraction (.-), 6-11
exponentiation (^ **), 6-3
left division (\), 6-5
mod (%), 6-6
multiplication (*), 6-4
subtraction (-), 6-8

algebraic expression, 6-1 to 6-2
algebraic unary operators, 6-12 to 6-13

additive inverse (-), 6-13
conjugate transpose (`), 6-12

analysis functions
approximation functions

fit, 7-151 to 7-155
fitEval, 7-156 to 7-157
interp, 7-201 to 7-203
interpEval, 7-204 to 7-205
spline, 7-319 to 7-320
splineEval, 7-321

basic math functions
abs, 7-1
arg, 7-31
cbrt, 7-44 to 7-45
ceil, 7-49 to 7-50
conj, 7-59 to 7-60
floor, 7-158 to 7-159
gcd, 7-167 to 7-168
lcm, 7-220
pow, 7-263
prod, 7-264

round, 7-289
sign, 7-299
sqrt, 7-322
sum, 7-328

derivative functions
curl, 7-96 to 7-97
derivative, 7-102 to 7-104
div, 7-113
gradient, 7-177 to 7-178
hessian, 7-183 to 7-184
jacobian, 7-213 to 7-214
laplacian, 7-219
partial, 7-254 to 7-255

differential equation functions
ODEBVP function, 7-235 to 7-239
ODEIVP function, 7-240 to 7-243

integral functions
integEqn, 7-194 to 7-197

integration functions
integrate, 7-198 to 7-200

linear algebra functions
bandwidth, 7-33 to 7-34
basis, 7-35 to 7-36
choleskyD, 7-53 to 7-54
cond, 7-58
convert, 7-61 to 7-64
cross, 7-93
det, 7-105
diag, 7-106
dim, 7-109 to 7-110
dist, 7-111 to 7-112
dot, 7-115
eigen, 7-116 to 7-118
eigenDom, 7-119 to 7-120
eigenSel, 7-121 to 7-122
fill, 7-146
givens, 7-175 to 7-176
hessenbergD, 7-181 to 7-182
householder, 7-186 to 7-187
inv, 7-206 to 7-207

Index

© National Instruments Corporation I-3 HiQ Reference Manual

LUD, 7-224 to 7-225
norm, 7-232 to 7-234
ones, 7-244
permu, 7-259 to 7-260
pinv, 7-261 to 7-262
QRD, 7-266 to 7-267
rank, 7-272
reflect, 7-275
rotate, 7-287 to 7-288
schurD, 7-291 to 7-292
seq, 7-296 to 7-297
solve, 7-307 to 7-313
sparsity, 7-318
SV, 7-329 to 7-330
SVD, 7-331 to 7-332
symD, 7-333 to 7-334
trace, 7-356
trans, 7-357
vanish, 7-360

nonlinear systems functions
root, 7-283 to 7-284
roots, 7-285 to 7-286

optimization functions
optimize, 7-247 to 7-253

polynomial functions
compose, 7-57
createPoly, 7-85 to 7-89
degree, 7-100
divide, 7-114
eval, 7-129 to 7-130
evalPoly, 7-131 to 7-135

special functions
airy, 7-5 to 7-6
besselJ, 7-38
besselJs, 7-39
besselK, 7-40
bessell, 7-37
besselY, 7-41
besselYs, 7-42
beta, 7-43

coshI, 7-69
cosI, 7-70
dawson, 7-99
digamma, 7-107
diln, 7-108
elliptic1, 7-123
elliptic2, 7-124
ellipticJ, 7-125
exp, 7-136
expI, 7-137
fact, 7-144
fCosI, 7-145
fSinI, 7-162
gamma, 7-163 to 7-164
gammaC, 7-165
gauss, 7-166
guder, 7-179
guderInv, 7-180
kelvinI, 7-215
kelvinK, 7-216
kummer, 7-217
ln, 7-221
log, 7-222
sinhI, 7-304
sinI, 7-305
stirling, 7-324
struve, 7-325
tricomi, 7-358
weber, 7-364
zeta, 7-367

statistics functions
avgDev, 7-32
CDF, 7-46 to 7-48
cor, 7-65
cov, 7-73
erf, 7-126
erfc, 7-127
histogram, 7-185
kurtosis, 7-218
mean, 7-227

Index

HiQ Reference Manual I-4 © National Instruments Corporation

median, 7-228
moment, 7-231
PDF, 7-256 to 7-258
quartile, 7-268
random, 7-269 to 7-270
range, 7-271
seed, 7-295
skew, 7-306
stdDev, 7-323
var, 7-361

structure functions
createMatrix, 7-78 to 7-82
createVector, 7-90 to 7-91
ident, 7-188

trigonometric functions
arccos, 7-7 to 7-8
arccosh, 7-9 to 7-10
arccot, 7-11 to 7-12
arccoth, 7-13 to 7-14
arccsc, 7-15 to 7-16
arccsch, 7-17 to 7-18
arcsec, 7-19 to 7-20
arcsech, 7-21 to 7-22
arcsin, 7-23 to 7-24
arcsinh, 7-25 to 7-26
arctan, 7-27 to 7-28
arctanh, 7-29 to 7-30
cos, 7-66
cosh, 7-67 to 7-68
cot, 7-71
coth, 7-72
csc, 7-94
csch, 7-95
sec, 7-293
sech, 7-294
sin, 7-300
sinh, 7-301 to 7-303
tan, 7-335
tanh, 7-336

utility functions
find, 7-147 to 7-150
fpart, 7-161
ipart, 7-208
isMatrix, 7-210 to 7-212
max, 7-226
min, 7-230
remove, 7-276 to 7-277
replace, 7-280 to 7-282
sort, 7-314 to 7-317
subrange, 7-326 to 7-327
toComplex, 7-339
toInteger, 7-340
toMatrix, 7-341
toNumeric, 7-342 to 7-346
toReal, 7-347
toScalar, 7-348
toText, 7-349 to 7-354
toVector, 7-355

and (&&) operator, 5-17
Application object, 1-13 to 1-15

methods, 1-14 to 1-15
Exit, 1-14 to 1-15
Open, 1-15

properties, 1-14
CurrentDirectory, 1-14
Visible, 1-14

approximation functions
fit, 7-151 to 7-155
fitEval, 7-156 to 7-157
interp, 7-201 to 7-203
interpEval, 7-204 to 7-205
spline, 7-319 to 7-320
splineEval, 7-321

arccos function, 7-7 to 7-8
arccosh function, 7-9 to 7-10
arccot function, 7-11 to 7-12
arccoth function, 7-13 to 7-14
arccsc function, 7-15 to 7-16
arccsch function, 7-17 to 7-18

Index

© National Instruments Corporation I-5 HiQ Reference Manual

arcsec function, 7-19 to 7-20
arcsech function, 7-21 to 7-22
arcsin function, 7-23 to 7-24
arcsinh function, 7-25 to 7-26
arctan function, 7-27 to 7-28
arctanh function, 7-29 to 7-30
arg function, 7-31
assignment statements

purpose and use, 5-7
syntax and description, 6-14 to 6-15

assume statement, 6-16
attach command, 2-7
attached/detached mode, Command

Window, 2-1
auto scaling graphs, 3-31
automation client, ActiveX, 1-2
automation errors, ActiveX (table),

1-22 to 1-23
automation server, ActiveX, 1-2
auxiliary objects, 4-1
avgDev function, 7-32
axis properties (table), 3-24 to 3-29,

4-41 to 4-44
axis scaling constants (table), B-5

B
backward differentiation formula,

7-239, 7-243
bandwidth function, 7-33 to 7-34
basic math functions

abs, 7-1
arg, 7-31
cbrt, 7-44 to 7-45
ceil, 7-49 to 7-50
conj, 7-59 to 7-60
floor, 7-158 to 7-159
gcd, 7-167 to 7-168
lcm, 7-220
pow, 7-263
prod, 7-264

round, 7-289
sign, 7-299
sqrt, 7-322
sum, 7-328

basis function, 7-35 to 7-36
Bateman’s G function, 7-107, 7-164
Beale-Sorenson method, 7-250
bessell function, 7-37
besselJ function, 7-38
besselJs function, 7-39
besselK function, 7-40
besselY function, 7-41
besselYs function, 7-42
beta function, 7-43
block statements, Command Window, 2-5
border style constants (table), B-2
browse command

description (table), 2-7
invoking HiQ ActiveX Object

Browser, 1-3
browser. See HiQ ActiveX Object Browser.
Bulirsch-Stoer algorithm, 7-239, 7-242
bulletin board support, C-1

C
calling user functions, 5-13. See also

user functions.
cbrt function, 7-44 to 7-45
cd command, 2-7
CDF function, 7-46 to 7-48
ceil function, 7-49 to 7-50
changePlotData function, 7-51 to 7-52
Chebyshev orthogonal polynomials,

7-86 to 7-87, 7-132 to 7-133
choleskyD function, 7-53 to 7-54
clear command, 2-6
clearHistory command, 2-6
clearLog function, 7-55
close function, 7-56
Close method, Notebook object, 1-16

Index

HiQ Reference Manual I-6 © National Instruments Corporation

color constants, B-10
color initialization operator, 6-17
color map constants (table), B-6
Color objects, 4-28
Command Window, 2-1 to 2-8

accessing Log Window, 2-8
commands (table), 2-6 to 2-7
customizing, 2-1 to 2-4

attached/detached mode, 2-1
HiQ/MATLAB mode, 2-4
history of commands, 2-3 to 2-4
object views, 2-2 to 2-3
recalling commands from empty

command line, 2-3 to 2-4
recalling commands with match

string, 2-4
syntax highlighting and

font options, 2-2
terse/verbose mode, 2-2

MATLAB mode commands, 2-8
Properties tab, 2-3
shortcuts, 2-4 to 2-5

default object assignment, 2-5
multiple statements and block

statement support, 2-5
optional trailing semicolon,

2-4 to 2-5
terminating commands, 2-5

comments, 5-6
compiling scripts, 5-4 to 5-5
complex literal, 6-18
Complex scalar objects, 4-4
compose function, 7-57
cond function, 7-58
conditional expressions, 5-17 to 5-18. See also

expressions.
conj function, 7-59 to 7-60
conjugate gradient method, 7-250
conjugate transpose (`) operator, 6-12

constant statement, 6-19
constants, B-1 to B-20

function constants (table), B-11 to B-20
language constants, B-8 to B-10

color constants, B-10
numeric constants, B-8 to B-9
text constants, B-9

numeric constants, HiQ-Script, 5-12
property constants, B-1 to B-8

axis scaling constants (table), B-5
border style constants (table), B-2
color map constants (table), B-6
contour constants (table), B-5
coordinate system constants

(table), B-5
fill style constants (table), B-3
lighting attenuation constants

(table), B-6
line interpolation constants

(table), B-7
line style constants (table), B-4
numeric formatting constants (table),

B-7 to B-8
object type constants (table),

B-1 to B-2
plot style constants (table), B-3
point style constants (table), B-4
projection style constants (table), B-5
view mode constants (table), B-6

contour constants (table), B-5
contour properties (table), 3-22 to 3-24, 4-51
controlling HiQ from other applications,

1-13 to 1-21
Application object, 1-13 to 1-15

methods, 1-14 to 1-15
properties, 1-14

Notebook object, 1-15 to 1-22
methods, 1-16 to 1-21
properties, 1-16

Index

© National Instruments Corporation I-7 HiQ Reference Manual

controlling other applications from HiQ,
1-12 to 1-13

controls container, ActiveX, 1-2
convert function, 7-61 to 7-64
coordinate system constants (table), B-5
cor function, 7-65
cos function, 7-66
cosh function, 7-67 to 7-68
coshI function, 7-69
cosI function, 7-70
cot function, 7-71
coth function, 7-72
cov function, 7-73
createGraph function, 7-74 to 7-76
createInterface function, 7-77
createMatrix function, 7-78 to 7-82
createPlot function, 7-83 to 7-84
createPoly function, 7-85 to 7-89
createVector function, 7-90 to 7-91
createView function, 7-92
cross function, 7-93
csc function, 7-94
csch function, 7-95
cumulative distribution function (CDF

function), 7-46 to 7-48
curl function, 7-96 to 7-97
customer communication, xxi, C-1 to C-2
customizing Command Window. See

Command Window.
cyclic composite algorithm, 7-239, 7-243

D
date function, 7-98
dawson function, 7-99
default object assignment, 2-5
degree function, 7-100
delete command, 2-6
deleteFile function, 7-101

derivative function, 7-102 to 7-104
derivative functions

curl, 7-96 to 7-97
derivative, 7-102 to 7-104
div, 7-113
gradient, 7-177 to 7-178
hessian, 7-183 to 7-184
jacobian, 7-213 to 7-214
laplacian, 7-219
partial, 7-254 to 7-255

det function, 7-105
detach command, 2-7
detached mode, Command Window, 2-1
diag function, 7-106
differential equation functions

ODEBVP function, 7-235 to 7-239
ODEIVP function, 7-240 to 7-243

digamma function, 7-107
diln function, 7-108
dim function, 7-109 to 7-110
dir command, 2-7
dist function, 7-111 to 7-112
div function, 7-113
divide function, 7-114
division operators

division (/) operator, 6-5
elementwise division (./) operator, 6-10
elementwise left division (.\)

operator, 6-10
document container, ActiveX, 1-1 to 1-3
document server, ActiveX, 1-1
documentation

conventions used in manual, xx-xxi
organization of manual, xix-xx
related documentation, xxi

dot function, 7-115

E
eigen function, 7-116 to 7-118
eigenDom function, 7-119 to 7-120

Index

HiQ Reference Manual I-8 © National Instruments Corporation

eigenSel function, 7-121 to 7-122
electronic support services, C-1 to C-2
elementwise addition (.+) operator, 6-11
elementwise division (./) operator, 6-10
elementwise exponentiation (.^ .**)

operator, 6-9
elementwise left division (.\) operator, 6-10
elementwise mod (.%) operator, 6-10
elementwise multiplication (.*) operator, 6-9
elementwise subtraction (.-) operator, 6-11
elliptic1 function, 7-123
elliptic2 function, 7-124
ellipticJ function, 7-125
e-mail support, C-2
embedding

ActiveX controls in HiQ, 1-23 to 1-24
HiQ Notebook in other applications,

1-11 to 1-12
objects into HiQ Notebook, 1-8 to 1-11

procedure for, 1-8 to 1-9
programmatically modifying

embedded Word document,
1-10 to 1-11

equal to (==) operator, 5-17
erf function, 7-126
erfc function, 7-127
error function, 7-128
eval function, 7-129 to 7-130
evalPoly function, 7-131 to 7-135
Exit method, Application object, 1-14 to 1-15
exit statement, 6-20
exp function, 7-136
expI function, 7-137
exponentiation (^ **) operator, 6-3
exponentiation operator, elementwise

(.^ .**), 6-9
export function, 7-138 to 7-143

external description string,
7-138 to 7-139

format description string, 7-139 to 7-142

internal description string, 7-143
purpose and use, 7-138

expressions. See also operators.
algebraic expression, 6-1 to 6-2
conditional, 5-17 to 5-18

examples, 5-18
logical expression, 6-32
rules for using, 5-6 to 5-7

F
fact function, 7-144
fax and telephone support numbers, C-2
Fax-on-Demand support, C-2
fCosI function, 7-145
file I/O functions

close, 7-56
export, 7-138 to 7-143
flush, 7-160
getFilePos, 7-171
getFileSize, 7-172
import, 7-189 to 7-193
isEOF, 7-209
open, 7-245 to 7-246
read, 7-273
readLine, 7-274
renameFile, 7-279
setFilePos, 7-298
write, 7-365
writeLine, 7-366

fill function, 7-146
fill style constants (table), B-3
find function, 7-147 to 7-150
fit function, 7-151 to 7-155
fitEval function, 7-156 to 7-157
floor function, 7-158 to 7-159
flow control and looping, 5-16 to 5-20

conditional expressions, 5-17 to 5-18
if-then-else statement, 5-16
for loop, 5-18 to 5-19

Index

© National Instruments Corporation I-9 HiQ Reference Manual

select statement, 5-18
while loop, 5-19 to 5-20

flush function, 7-160
font initialization operator, 6-21
Font objects, 4-29
font options for syntax highlighting,

Command Window, 2-2
for statement (for loop)

purpose and use, 5-18 to 5-19
syntax and description, 6-22

four-dimensional plots, creating, 3-11
fpart function, 7-161
Fredholm integral equations, 7-194, 7-195
Fresnel cosine integral function, 7-145
Fresnel sine integral function, 7-162
fSinI function, 7-162
FTP support, C-1
function call, 6-25
function constants (table), B-11 to B-20
function initialization operator, 6-26 to 6-27
Function objects, 4-30
function reference

analysis functions
approximation functions

fit, 7-151 to 7-155
fitEval, 7-156 to 7-157
interp, 7-201 to 7-203
interpEval, 7-204 to 7-205
list of functions (table), A-1
spline, 7-319 to 7-320
splineEval, 7-321

basic math functions
abs, 7-1
arg, 7-31
cbrt, 7-44 to 7-45
ceil, 7-49 to 7-50
conj, 7-59 to 7-60
floor, 7-158 to 7-159
gcd, 7-167 to 7-168
lcm, 7-220
list of functions, A-1 to A-2

pow, 7-263
prod, 7-264
round, 7-289
sign, 7-299
sqrt, 7-322
sum, 7-328

derivative functions
curl, 7-96 to 7-97
derivative, 7-102 to 7-104
div, 7-113
gradient, 7-177 to 7-178
hessian, 7-183 to 7-184
jacobian, 7-213 to 7-214
laplacian, 7-219
list of functions, A-2
partial, 7-254 to 7-255

differential equations
ODEBVP function,

7-235 to 7-239
ODEIVP function,

7-240 to 7-243
integral functions

integEqn, 7-194 to 7-197
integration functions

integrate, 7-198 to 7-200
linear algebra functions

bandwidth, 7-33 to 7-34
basis, 7-35 to 7-36
choleskyD, 7-53 to 7-54
compose, 7-57
cond, 7-58
convert, 7-61 to 7-64
cross, 7-93
det, 7-105
diag, 7-106
dim, 7-109 to 7-110
dist, 7-111 to 7-112
dot, 7-115
eigen, 7-116 to 7-118
eigenDom, 7-119 to 7-120
eigenSel, 7-121 to 7-122

Index

HiQ Reference Manual I-10 © National Instruments Corporation

fill, 7-146
givens, 7-175 to 7-176
hessenbergD, 7-181 to 7-182
householder, 7-186 to 7-187
inv, 7-206 to 7-207
list of functions (table),

A-3 to A-5
LUD, 7-224 to 7-225
norm, 7-232 to 7-234
ones, 7-244
permu, 7-259 to 7-260
pinv, 7-261 to 7-262
QRD, 7-266 to 7-267
rank, 7-272
reflect, 7-275
rotate, 7-287 to 7-288
schurD, 7-291 to 7-292
seq, 7-296 to 7-297
solve, 7-307 to 7-313
sparsity, 7-318
SV, 7-329 to 7-330
SVD, 7-331 to 7-332
symD, 7-333 to 7-334
trace, 7-356
trans, 7-357
vanish, 7-360

list of functions (table), A-1 to A-11
nonlinear systems functions

list of functions, A-5
root, 7-283 to 7-284
roots, 7-285 to 7-286
solve, 7-307 to 7-313

optimization functions
optimize, 7-247 to 7-253

polynomial functions
compose, 7-57
createPoly, 7-85 to 7-89
degree, 7-100
divide, 7-114
eval, 7-129 to 7-130
evalPoly, 7-131 to 7-135

inv, 7-206 to 7-207
list of functions (table),

A-5 to A6
special functions

airy, 7-5 to 7-6
besselJ, 7-38
besselJs, 7-39
besselK, 7-40
bessell, 7-37
besselY, 7-41
besselYs, 7-42
beta, 7-43
coshI, 7-69
cosI, 7-70
dawson, 7-99
digamma, 7-107
diln, 7-108
elliptic1, 7-123
elliptic2, 7-124
ellipticJ, 7-125
exp, 7-136
expI, 7-137
fact, 7-144
fCosI, 7-145
fSinI, 7-162
gamma, 7-163 to 7-164
gammaC, 7-165
gauss, 7-166
guder, 7-179
guderInv, 7-180
kelvinI, 7-215
kelvinK, 7-216
kummer, 7-217
list of functions, A-5 to A-8
ln, 7-221
log, 7-222
sinhI, 7-304
sinI, 7-305
stirling, 7-324
struve, 7-325
tricomi, 7-358

Index

© National Instruments Corporation I-11 HiQ Reference Manual

weber, 7-364
zeta, 7-367

statistics functions
avgDev, 7-32
CDF, 7-46 to 7-48
cor, 7-65
cov, 7-73
erf, 7-126
erfc, 7-127
histogram, 7-185
kurtosis, 7-218
list of functions (table),

A-8 to A-9
mean, 7-227
median, 7-228
moment, 7-231
PDF, 7-256 to 7-258
quartile, 7-268
random, 7-269 to 7-270
range, 7-271
seed, 7-295
skew, 7-306
stdDev, 7-323
var, 7-361

structure functions
createMatrix, 7-78 to 7-82
createVector, 7-90 to 7-91
fill, 7-146
ident, 7-188
list of functions, A-9
ones, 7-244
seq, 7-296 to 7-297

trigonometric functions
arccos, 7-7 to 7-8
arccosh, 7-9 to 7-10
arccot, 7-11 to 7-12
arccoth, 7-13 to 7-14
arccsc, 7-15 to 7-16
arccsch, 7-17 to 7-18
arcsec, 7-19 to 7-20
arcsech, 7-21 to 7-22

arcsin, 7-23 to 7-24
arcsinh, 7-25 to 7-26
arctan, 7-27 to 7-28
arctanh, 7-29 to 7-30
cos, 7-66
cosh, 7-67 to 7-68
cot, 7-71
coth, 7-72
csc, 7-94
csch, 7-95
list of functions (table),

A-9 to A-10
sec, 7-293
sech, 7-294
sin, 7-300
sinh, 7-301 to 7-303
tan, 7-335
tanh, 7-336

utility functions
compose, 7-57
find, 7-147 to 7-150
fpart, 7-161
ipart, 7-208
isMatrix, 7-210 to 7-212
list of functions (table),

A-10 to A-11
max, 7-226
min, 7-230
random, 7-269 to 7-270
remove, 7-276 to 7-277
replace, 7-280 to 7-282
seed, 7-295
sort, 7-314 to 7-317
subrange, 7-326 to 7-327
toComplex, 7-339
toInteger, 7-340
toMatrix, 7-341
toNumeric, 7-342 to 7-346
toReal, 7-347
toScalar, 7-348

Index

HiQ Reference Manual I-12 © National Instruments Corporation

toText, 7-349 to 7-354
toVector, 7-355

file I/O functions
close, 7-56
export, 7-138 to 7-143
flush, 7-160
getFilePos, 7-171
getFileSize, 7-172
import, 7-189 to 7-193
isEOF, 7-209
list of functions (table), A-11 to A-12
open, 7-245 to 7-246
read, 7-273
readLine, 7-274
renameFile, 7-279
setFilePos, 7-298
write, 7-365
writeLine, 7-366

graphics functions
addPlot, 7-2 to 7-4
changePlotData, 7-51 to 7-52
createGraph, 7-74 to 7-76
createPlot, 7-83 to 7-84
list of functions (table), A-12
removePlot, 7-278

utility functions
clearLog, 7-55
createInterface, 7-77
createView, 7-92
date, 7-98
deleteFile, 7-101
error, 7-128
getFileName, 7-169 to 7-170
getNumber, 7-173
getText, 7-174
list of functions (table), A-12 to A-13
logMessage, 7-223
message, 7-229
putFileName, 7-265
saveLog, 7-290

time, 7-337
timer, 7-338
updateViews, 7-359
wait, 7-362
warning, 7-363

function statement, 6-23 to 6-24

G
gamma function, 7-163 to 7-164
gammaC function, 7-165
gauss function, 7-166
gcd function, 7-167 to 7-168
Gegenbauer orthogonal polynomials, 7-87
get command, MATLAB mode, 2-8
getAll command, MATLAB mode, 2-8
GetData method, Notebook object, 1-17
getFileName function, 7-169 to 7-170
getFilePos function, 7-171
getFileSize function, 7-172
getNumber function, 7-173
getText function, 7-174
givens function, 7-175 to 7-176
gradient function, 7-177 to 7-178
Graph object properties, 3-13 to 3-30,

4-36 to 4-44
axis properties (table), 3-24 to 3-29,

4-41 to 4-44
contour properties (table),

3-22 to 3-24, 4-51
graph properties (table), 3-14 to 3-16,

4-36 to 4-41
light properties (table), 3-29 to 3-30, 4-44
plot properties (table), 3-17 to 3-22,

4-45 to 4-50
setting, 3-13

graphics, 3-1 to 3-32
common graph operations, 3-13 to 3-32

autoscaling, 3-31
legends, 3-31
querying graph properties, 3-31

Index

© National Instruments Corporation I-13 HiQ Reference Manual

removing plots, 3-32
setting graph properties, 3-13 to 3-30

three-dimensional graphs, 3-6 to 3-13
accelerated OpenGL graphics

adapters, 3-12 to 3-13
adding plot to existing graph,

3-7 to 3-9
changing data of 3D plot, 3-9 to 3-10
creating 3D graph, 3-6 to 3-7
creating 3D plot objects, 3-9
creating 4D plots, 3-11
creating graph and plot

simultaneously, 3-11
features, 3-6
interacting with 3D graphs, 3-12
using lights, 3-12

two-dimensional graphs, 3-1 to 3-5
adding multiple Y axes to

2D graph, 3-5
adding plot to existing graph,

3-2 to 3-3
changing data of 2D plot, 3-4
creating 2D graph, 3-2
creating 2D plot objects, 3-3
creating graph and plot

simultaneously, 3-5
features, 3-1

graphics functions
addPlot, 7-2 to 7-4
changePlotData, 7-51 to 7-52
createGraph, 7-74 to 7-76
createPlot, 7-83 to 7-84
removePlot, 7-278

greater than (>) operator, 5-17
greater than or equal to (>=) operator, 5-17
guder function, 7-179
guderInv function, 7-180

H
Heaviside vector, 7-35
help command, 2-6
Hermite orthogonal polynomials, 7-88, 7-134
hessenbergD function, 7-181 to 7-182
hessian function, 7-183 to 7-184
HiQ ActiveX Object Browser

displaying, 1-3 to 1-5
Help button, 1-4
illustration, 1-4
References button, 1-4
using, 1-5 to 1-7
windows, 1-4

HiQ Constant objects, 4-34
HiQ-Script, 5-1 to 5-20

assignment statements, 5-7
comments, 5-6
expressions, 5-6 to 5-7
flow control and looping, 5-16 to 5-20

conditional expressions, 5-17 to 5-18
if-then-else statement, 5-16
for loop, 5-18 to 5-19
select statement, 5-18
while loop, 5-19 to 5-20

naming conventions, 5-3
numeric objects, 5-8 to 5-12

creating, 5-8
initializer syntax, 5-9
numeric constants, 5-12
polynomial objects, 5-10 to 5-11
subranges, 5-10
subscripts, 5-9 to 5-10
type conversion, 5-11

object scope, 5-15
overview, 5-1
purpose and use, 5-2
Script objects, 5-3 to 5-6

active Script object on Notebook
page (figure), 5-4

compiling scripts, 5-4 to 5-5

Index

HiQ Reference Manual I-14 © National Instruments Corporation

definition, 5-3
running scripts, 5-5
syntax highlighting, 5-6

user functions, 5-12 to 5-15
calling functions, 5-13
initialization syntax, 5-14 to 5-15
return statement, 5-13 to 5-14
structure of functions, 5-13
writing functions, 5-12 to 5-13

HiQ-Script reference, 6-1 to 6-53
algebraic binary operators, 6-3 to 6-11

addition (+), 6-7
division (/), 6-5
elementwise addition (.+), 6-11
elementwise division (./), 6-10
elementwise exponentiation

(.^ .**), 6-9
elementwise left division (.\), 6-10
elementwise mod (.%), 6-10
elementwise multiplication (.*), 6-9
elementwise subtraction (.-), 6-11
exponentiation (^ **), 6-3
left division (\), 6-5
mod (%), 6-6
multiplication (*), 6-4
subtraction (-), 6-8

algebraic expression, 6-1 to 6-2
algebraic unary operators, 6-12 to 6-13

additive inverse (-), 6-13
conjugate transpose (`), 6-12

assignment statement, 6-14 to 6-15
assume statement, 6-16
color initialization operator, 6-17
complex literal, 6-18
constant statement, 6-19
exit statement, 6-20
font initialization operator, 6-21
function call, 6-25
function initialization operator,

6-26 to 6-27
function statement, 6-23 to 6-24

if statement, 6-28 to 6-29
integer literal, 6-30
local statement, 6-31
logical binary operators, 6-33
logical expression, 6-32
logical unary operators, 6-34
matrix initialization operator, 6-35
next statement, 6-36
polynomial initialization operator, 6-37
precedence of evaluation, 6-38
project statement, 6-39
property operator, 6-40
real literal, 6-41
relational operators, 6-42 to 6-43
repeat forever statement, 6-45
repeat statement, 6-44
return statement, 6-46
select statement, 6-47
for statement, 6-22
subrange operator, 6-48 to 6-50

matrix, 6-50
polynomial, 6-49
text, 6-49
vector, 6-49

text literal, 6-51
vector initialization operator, 6-52
while statement, 6-53

histogram function, 7-185
history of commands, in Command Window,

2-3 to 2-4
Householder algorithm, 7-311
householder function, 7-186 to 7-187

I
ident, 7-188
if statement

if-then-else statement, 5-16
syntax and description, 6-28 to 6-29

Index

© National Instruments Corporation I-15 HiQ Reference Manual

import function, 7-189 to 7-193
external description string, 7-190
format description string, 7-191 to 7-192
internal description string, 7-192 to 7-193
purpose and use, 7-189 to 7-190

inclusive or operator, 5-17
initialization operators

color initialization operator, 6-17
font initialization operator, 6-21
function initialization operator,

6-26 to 6-27
matrix initialization operator, 6-35
polynomial initialization operator, 6-37
vector initialization operator, 6-52

initializer syntax
numeric objects, HiQ-Script, 5-9
user functions, HiQ-Script, 5-14 to 5-15

integEqn function, 7-194 to 7-197
integer literal, 6-30
Integer scalar objects, 4-4
integrate function, 7-198 to 7-200
interp function, 7-201 to 7-203
interpEval function, 7-204 to 7-205
inv function, 7-206 to 7-207
ipart function, 7-208
is equal to (==) operator, 5-17
isEOF function, 7-209
isMatrix function, 7-210 to 7-212

J
Jacobi elliptic functions, 7-125
Jacobi orthogonal polynomials, 7-133
jacobian function, 7-213 to 7-214

K
kelvinI function, 7-215
kelvinK function, 7-216
Kronecker vector, 7-35

kummer function, 7-217
kurtosis function, 7-218

L
Laguerre orthogonal polynomials,

7-88 to 7-89, 7-134 to 7-135
language constants, B-8 to B-10

color constants, B-10
numeric constants, B-8 to B-9
text constants, B-9

laplacian function, 7-219
lcm function, 7-220
left division (\) operator, 6-5
left division operator, elementwise (.\), 6-10
Legendre orthogonal polynomials, 7-89, 7-135
legends, for graphs, 3-31
less than (<) operator, 5-17
less than or equal to (<=) operator, 5-17
Levenberg-Marquardt method, 7-251
lighting attenuation constants (table), B-6
lights

adding to graphs, 3-12
properties (table), 3-29 to 3-30, 4-44

line interpolation constants (table), B-7
line style constants (table), B-4
linear algebra functions

bandwidth, 7-33 to 7-34
basis, 7-35 to 7-36
choleskyD, 7-53 to 7-54
cond, 7-58
convert, 7-61 to 7-64
cross, 7-93
det, 7-105
diag, 7-106
dim, 7-109 to 7-110
dist, 7-111 to 7-112
dot, 7-115
eigen, 7-116 to 7-118
eigenDom, 7-119 to 7-120
eigenSel, 7-121 to 7-122

Index

HiQ Reference Manual I-16 © National Instruments Corporation

fill, 7-146
givens, 7-175 to 7-176
hessenbergD, 7-181 to 7-182
householder, 7-186 to 7-187
inv, 7-206 to 7-207
LUD, 7-224 to 7-225
norm, 7-232 to 7-234
ones, 7-244
permu, 7-259 to 7-260
pinv, 7-261 to 7-262
QRD, 7-266 to 7-267
rank, 7-272
reflect, 7-275
rotate, 7-287 to 7-288
schurD, 7-291 to 7-292
seq, 7-296 to 7-297
solve, 7-307 to 7-313
sparsity, 7-318
SV, 7-329 to 7-330
SVD, 7-331 to 7-332
symD, 7-333 to 7-334
trace, 7-356
trans, 7-357
vanish, 7-360

literals
complex literal, 6-18
integer literal, 6-30
real literal, 6-41
text literal, 6-51

ln function, 7-221
local objects, HiQ-Script, 5-15
local statement, 6-31
log function, 7-222
Log Window, 2-8
logical binary operators, 6-33
logical expression, 6-32
logical NOT (!) operator, 5-17
logical unary operators, 6-34
logMessage function, 7-223
loops. See flow control and looping.

ls command, 2-7
LUD function, 7-224 to 7-225

M
manual. See documentation.
math functions, basic. See

basic math functions.
matlab command, 2-7
MATLAB mode

commands, 2-8
entering, 2-4

matrix initialization operator, 6-35
Matrix objects. See Numeric Matrix objects.
max function, 7-226
mean function, 7-227
median function, 7-228
message function, 7-229
min function, 7-230
mod (%) operator, 6-6
mod operator, elementwise (.%), 6-10
moment function, 7-231
multiple statements, Command Window, 2-5
multiplication (*) operator, 6-4
multiplication operator, elementwise (.*), 6-9

N
naming conventions, HiQ-Script, 5-3
Nelder-Mead method, 7-250, 7-251
Newton algorithm, 7-312
next statement, 6-36
nonlinear systems functions

root, 7-283 to 7-284
roots, 7-285 to 7-286

norm function, 7-232 to 7-234
not equal to (!=) operator, 5-17

Index

© National Instruments Corporation I-17 HiQ Reference Manual

Notebook object, 1-15 to 1-21
methods, 1-16 to 1-21

Close, 1-16
GetData, 1-17
PrintOut, 1-17 to 1-18
RunScript, 1-18
Save, 1-18 to 1-19
SetComplexData, 1-19 to 1-20
SetData, 1-20 to 1-21
SetScript, 1-21

properties, 1-16
numeric constants, 5-12, B-8 to B-9
numeric formatting constants (table),

B-7 to B-8
Numeric Matrix objects, 4-14 to 4-20

accessing matrix elements, 4-14
automatically creating elements, 4-14
properties (table), 4-15 to 4-20

numeric objects, HiQ-Script, 5-8 to 5-12
creating, 5-8
initializer syntax, 5-9
numeric constants, 5-12
polynomial objects, 5-10 to 5-11
subranges, 5-10
subscripts, 5-9 to 5-10
type conversion, 5-11

Numeric Polynomial objects
HiQ-Script, 5-10 to 5-11
overview, 4-21
properties (table), 4-21 to 4-24

Numeric Scalar objects, 4-4 to 4-7
Complex scalar, 4-4
Integer scalar, 4-4
properties (table), 4-4 to 4-7
Real scalar, 4-4

Numeric Vector objects, 4-8 to 13
accessing elements, 4-8
creating elements automatically, 4-8
properties (table), 4-9 to 4-13

O
Object Browser. See HiQ ActiveX

Object Browser.
object scope, HiQ-Script, 5-15

local objects, 5-15
project objects, 5-15

object type constants (table), B-1 to B-2
object views

Command Window, 2-2 to 2-3
creating, 4-2
deleting, 4-2
overview, 4-2
updating (updateViews function), 7-359
view mode constants (table), B-6

objects, 4-1 to 4-51
ActiveX, 4-31
ActiveX Control, 4-32
ActiveX Interface, 4-33
Application object, 1-13 to 1-15
auxiliary, 4-1
categories, 4-1
Color, 4-28
creating, 4-1
definition, 4-1
embedding

ActiveX controls in HiQ,
1-23 to 1-24

HiQ Notebook in other applications,
1-11 to 1-12

objects into HiQ Notebook,
1-8 to 1-11

Font, 4-29
Function, 4-30
Graph, 4-36 to 4-44
HiQ Constant, 4-34
Notebook object, 1-15 to 1-21
numeric, 4-1
Numeric Matrix, 4-14 to 4-20
Numeric Polynomial, 4-21 to 4-24
Numeric Scalar, 4-4 to 4-7

Index

HiQ Reference Manual I-18 © National Instruments Corporation

Numeric Vector, 4-8 to 13
Plot, 4-45 to 4-51
properties, 4-3

changing, 4-3
default settings, 4-3

Script, 5-3 to 5-6
active Script object on Notebook

page (figure), 5-4
compiling scripts, 5-4 to 5-5
definition, 5-3
properties (table), 4-26 to 4-27
running scripts, 5-5
syntax highlighting, 5-6

Text, 4-25
Untyped, 4-35
views, 4-2

creating, 4-2
deleting, 4-2

visualization, 4-1
objects command, 2-6
ODEBVP function, 7-235 to 7-239
ODEIVP function, 7-240 to 7-243
ones function, 7-244
open function, 7-245 to 7-246
Open method, Application object, 1-15
OpenGL graphics adapters, accelerated,

3-12 to 3-13
openNotebook command, 2-6
operators. See also expressions.

algebraic binary operators, 6-3 to 6-11
algebraic unary operators, 6-12 to 6-13
color initialization operator, 6-17
in conditional expressions, 5-17 to 5-18
font initialization operator, 6-21
function initialization operator,

6-26 to 6-27
logical binary operators, 6-33
matrix initialization operator, 6-35
polynomial initialization operator, 6-37
property operator, 6-40
relational operators, 6-42 to 6-43

subrange operator, 6-48 to 6-50
vector initialization operator, 6-52

optimize function, 7-247 to 7-253
or (||) operator, 5-17

P
partial function, 7-254 to 7-255
PDF function, 7-256 to 7-258
permu function, 7-259 to 7-260
pinv function, 7-261 to 7-262
place command, 2-6
plot functions. See graphics functions.
Plot objects, 4-45 to 4-51
plot properties (table), 3-17 to 3-22,

4-45 to 4-50
plot style constants (table), B-3
plots. See also graphics.

removing plots, 3-32
three-dimensional graphs

adding plot to existing graph,
3-7 to 3-9

changing data of 3D plot, 3-9 to 3-10
creating 3D plot objects, 3-9
creating 4D plots, 3-11
creating graph and plot

simultaneously, 3-11
two-dimensional graphs

adding plot to existing graph,
3-2 to 3-3

changing data of 2D plot, 3-4
creating 2D plot objects, 3-3
creating graph and plot

simultaneously, 3-5
point style constants (table), B-4
Polak-Ribiere method, 7-250
polynomial functions

compose, 7-57
createPoly, 7-85 to 7-89
degree, 7-100
divide, 7-114

Index

© National Instruments Corporation I-19 HiQ Reference Manual

eval, 7-129 to 7-130
evalPoly, 7-131 to 7-135

polynomial initialization operator, 6-37
Polynomial objects. See

Numeric Polynomial objects.
pow function, 7-263
precedence of evaluation, 6-38
PrintOut method, Notebook object,

1-17 to 1-18
probability density function (PDF function),

7-256 to 7-258
prod function, 7-264
programming. See HiQ-Script.
project objects, 5-15
project statement, 6-39
projection style constants (table), B-5
properties

ActiveX Control objects (table), 4-32
ActiveX Interface objects (table), 4-33
ActiveX objects (table), 4-31
Application object, 1-14
Color objects (table), 4-28
Font objects (table), 4-29
Function objects (table), 4-30
Graph objects

axis properties (table), 3-24 to 3-29,
4-41 to 4-44

contour properties (table),
3-22 to 3-24, 4-51

graph properties (table),
3-14 to 3-16, 4-36 to 4-41

light properties (table),
3-29 to 3-30, 4-44

plot properties (table), 3-17 to 3-22,
4-45 to 4-50

querying, 3-31
setting, 3-13

HiQ Constant objects (table), 4-34
Notebook object, 1-16
Numeric Matrix objects (table),

4-15 to 4-20

Numeric Polynomial objects (table),
4-21 to 4-24

Numeric Scalar objects (table), 4-4 to 4-7
Numeric Vector objects (table),

4-9 to 4-13
objects

changing, 4-3
default settings, 4-3

Script objects (table), 4-26 to 4-27
Text objects (table), 4-25
Untyped objects (table), 4-35

property constants, B-1 to B-8
axis scaling constants (table), B-5
border style constants (table), B-2
color map constants (table), B-6
contour constants (table), B-5
coordinate system constants (table), B-5
fill style constants (table), B-3
lighting attenuation constants (table), B-6
line interpolation constants (table), B-7
line style constants (table), B-4
numeric formatting constants (table),

B-7 to B-8
object type constants (table), B-1 to B-2
plot style constants (table), B-3
point style constants (table), B-4
projection style constants (table), B-5
view mode constants (table), B-6

property operator, 6-40
psi function. See digamma function.
put command, MATLAB mode, 2-8
putAll command, MATLAB mode, 2-8
putFileName function, 7-265
pwd command, 2-7

Q
QRD function, 7-266 to 7-267
quartile function, 7-268
quasi-Newton algorithm, 7-250, 7-312

Index

HiQ Reference Manual I-20 © National Instruments Corporation

querying graphs properties, 3-31
quit command, 2-6

R
random function, 7-269 to 7-270
range function, 7-271
rank function, 7-272
read function, 7-273
readLine function, 7-274
real literal, 6-41
Real scalar objects, 4-4
recalling commands

from empty command line, 2-3 to 2-4
with match string, 2-4

reflect function, 7-275
relational operators, 6-42 to 6-43
remove function, 7-276 to 7-277
removePlot function, 7-278
renameFile function, 7-279
repeat forever statement, 6-45
repeat statement, 6-44
replace function, 7-280 to 7-282
return statement

syntax and description, 6-46
user functions, 5-13 to 5-14

root function, 7-283 to 7-284
roots function, 7-285 to 7-286
rotate function, 7-287 to 7-288
round function, 7-289
run command, Command Window, 2-7
Runge-Kutta-Fehlberg algorithm,

7-238, 7-242
RunScript method, Notebook object, 1-18

S
Save method, Notebook object, 1-18 to 1-19
saveLog function, 7-290
schurD function, 7-291 to 7-292

Script objects, 5-3 to 5-6
active Script object on Notebook page

(figure), 5-4
compiling scripts, 5-4 to 5-5
definition, 5-3
properties, 4-26 to 4-27
running scripts, 5-5
syntax highlighting, 5-6

scripting language. See HiQ-Script.
sec function, 7-293
sech function, 7-294
seed function, 7-295
select statement

purpose and use, 5-18
syntax and description, 6-47

semicolons, optional, in Command Window,
2-4 to 2-5

seq function, 7-296 to 7-297
SetComplexData method, Notebook object,

1-19 to 1-20
SetData method, Notebook object,

1-20 to 1-21
setFilePos function, 7-298
SetScript method, Notebook object, 1-21
sign function, 7-299
sin function, 7-300
sinh function, 7-301 to 7-303
sinhI function, 7-304
sinI function, 7-305
skew function, 7-306
solve function, 7-307 to 7-313
sort function, 7-314 to 7-317
sparsity function, 7-318
special functions

airy, 7-5 to 7-6
besselJ, 7-38
besselJs, 7-39
besselK, 7-40
bessell, 7-37
besselY, 7-41
besselYs, 7-42

Index

© National Instruments Corporation I-21 HiQ Reference Manual

beta, 7-43
coshI, 7-69
cosI, 7-70
dawson, 7-99
digamma, 7-107
diln, 7-108
elliptic1, 7-123
elliptic2, 7-124
ellipticJ, 7-125
exp, 7-136
expI, 7-137
fact, 7-144
fCosI, 7-145
fSinI, 7-162
gamma, 7-163 to 7-164
gammaC, 7-165
gauss, 7-166
guder, 7-179
guderInv, 7-180
kelvinI, 7-215
kelvinK, 7-216
kummer, 7-217
ln, 7-221
log, 7-222
sinhI, 7-304
sinI, 7-305
stirling, 7-324
struve, 7-325
tricomi, 7-358
weber, 7-364
zeta, 7-367

Spence’s Integral, 7-108
spline function, 7-319 to 7-320
splineEval function, 7-321
sqrt function, 7-322
statements. See also HiQ-Script reference.

multiple, in Command Window, 2-5
statistics functions

avgDev, 7-32
CDF, 7-46 to 7-48

cor, 7-65
cov, 7-73
erf, 7-126
erfc, 7-127
histogram, 7-185
kurtosis, 7-218
mean, 7-227
median, 7-228
moment, 7-231
PDF, 7-256 to 7-258
quartile, 7-268
random, 7-269 to 7-270
range, 7-271
seed, 7-295
skew, 7-306
stdDev, 7-323
var, 7-361

stdDev function, 7-323
stirling function, 7-324
structure functions

createMatrix, 7-78 to 7-82
createVector, 7-90 to 7-91
ident, 7-188

struve function, 7-325
subrange function, 7-326 to 7-327
subrange operator, 6-48 to 6-50

creating subranges, 5-10
matrix, 6-50
polynomial, 6-49
text, 6-49
vector, 6-49

subranges, creating, 5-10
subscript operator, 5-9 to 5-10
subtraction (-) operator, 6-8
subtraction operator, elementwise (.-), 6-11
sum function, 7-328
SV function, 7-329 to 7-330
SVD function, 7-331 to 7-332
symD function, 7-333 to 7-334

Index

HiQ Reference Manual I-22 © National Instruments Corporation

syntax highlighting
Command Window, 2-2
HiQ-Script, 5-6

T
tan function, 7-335
tanh function, 7-336
technical support, C-1 to C-2
telephone and fax support numbers, C-2
terminating commands, 2-5
terse command, 2-7
terse/verbose mode, Command Window, 2-2
text constants, B-9
text literal, 6-51
Text objects, 4-25
three-dimensional graphs, 3-6 to 3-13

accelerated OpenGL graphics adapters,
3-12 to 3-13

adding plot to existing graph, 3-7 to 3-9
changing data of 3D plot, 3-9 to 3-10
creating 3D graph, 3-6 to 3-7
creating 3D plot objects, 3-9
creating 4D plots, 3-11
creating graph and plot

simultaneously, 3-11
features, 3-6
interacting with 3D graphs, 3-12
panning, 3-12
rotating, 3-12
using lights, 3-12
zooming, 3-12

time function, 7-337
timer function, 7-338
toComplex function, 7-339
toInteger function, 7-340
toMatrix function, 7-341
toNumeric function, 7-342 to 7-346

external description string, 7-343
format description string, 7-344 to 7-345

internal description string, 7-346
purpose and use, 7-342 to 7-343

toReal function, 7-347
toScalar function, 7-348
toText function, 7-349 to 7-354

external description string,
7-349 to 7-350

format description string, 7-350 to 7-354
internal description string, 7-354
purpose and use, 7-349

toVector function, 7-355
trace function, 7-356
trans function, 7-357
tricomi function, 7-358
trigonometric functions

arccos, 7-7 to 7-8
arccosh, 7-9 to 7-10
arccot, 7-11 to 7-12
arccoth, 7-13 to 7-14
arccsc, 7-15 to 7-16
arccsch, 7-17 to 7-18
arcsec, 7-19 to 7-20
arcsech, 7-21 to 7-22
arcsin, 7-23 to 7-24
arcsinh, 7-25 to 7-26
arctan, 7-27 to 7-28
arctanh, 7-29 to 7-30
cos, 7-66
cosh, 7-67 to 7-68
cot, 7-71
coth, 7-72
csc, 7-94
csch, 7-95
sec, 7-293
sech, 7-294
sin, 7-300
sinh, 7-301 to 7-303
tan, 7-335
tanh, 7-336

Index

© National Instruments Corporation I-23 HiQ Reference Manual

two-dimensional graphs, 3-1 to 3-5
adding multiple Y axes to 2D graph, 3-5
adding plot to existing graph, 3-2 to 3-3
changing data of 2D plot, 3-4
creating 2D graph, 3-2
creating 2D plot objects, 3-3
creating graph and plot

simultaneously, 3-5
features, 3-1

type conversion, 5-11

U
unary operators

algebraic unary operators, 6-12 to 6-13
logical unary operators, 6-34

underscores, in HiQ-Scripts, 5-3
Untyped objects, 4-35
updateViews function, 7-359
user functions, 5-12 to 5-15

calling functions, 5-13
initialization syntax, 5-14 to 5-15
return statement, 5-13 to 5-14
structure of functions, 5-13
writing functions, 5-12 to 5-13

utility functions
clearLog, 7-55
createInterface, 7-77
createView, 7-92
date, 7-98
deleteFile, 7-101
error, 7-128
find, 7-147 to 7-150
fpart, 7-161
getFileName, 7-169 to 7-170
getNumber, 7-173
getText, 7-174
ipart, 7-208
isMatrix, 7-210 to 7-212
logMessage, 7-223
max, 7-226

message, 7-229
min, 7-230
putFileName, 7-265
remove, 7-276 to 7-277
replace, 7-280 to 7-282
saveLog, 7-290
sort, 7-314 to 7-317
subrange, 7-326 to 7-327
time, 7-337
timer, 7-338
toComplex, 7-339
toInteger, 7-340
toMatrix, 7-341
toNumeric, 7-342 to 7-346
toReal, 7-347
toScalar, 7-348
toText, 7-349 to 7-354
toVector, 7-355
updateViews, 7-359
wait, 7-362
warning, 7-363

V
vanish function, 7-360
var function, 7-361
vector initialization operator, 6-52
verbose command, 2-7
verbose mode, Command Window, 2-2
view command, 2-7
view mode constants (table), B-6
views. See object views.
visualization objects, 4-1
Volterra integral equations, 7-194,

7-196 to 7-197

W
wait function, 7-362
warning function, 7-363
weber function, 7-364

Index

HiQ Reference Manual I-24 © National Instruments Corporation

whatChanged command, 2-6
whatis command, 2-7
while statement (while loop)

purpose and use, 5-19 to 5-20
syntax and description, 6-53

write function, 7-365
writeLine function, 7-366
writing user functions, 5-12 to 5-13. See also

user functions.

Z
zeta function, 7-367

	Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 ActiveX Connectivity
	ActiveX Technology
	HiQ Is an ActiveX Document Container
	HiQ Is an ActiveX Document Server
	HiQ Is an ActiveX Automation Client
	HiQ Is an ActiveX Automation Server
	HiQ Is an ActiveX Controls Container

	Communicating with ActiveX Servers, Objects, and�Controls
	Displaying the HiQ ActiveX Object Browser
	Using the HiQ ActiveX Object Browser

	Embedding Objects from Other Applications in HiQ
	Programmatically Modifying An Embedded Microsoft Word Document

	Embedding HiQ Notebooks in Other Applications
	Controlling Other Applications from HiQ
	Launching and Controlling Microsoft Excel from HiQ

	Controlling HiQ from Other Applications
	Application Object
	Application Object Properties
	Application Object Methods

	Notebook Object
	Notebook Object Properties
	Notebook Object Methods

	Automation Errors
	Using ActiveX Controls in HiQ

	Chapter 2 HiQ Command Window
	Customizing the Command Window
	Attached/Detached Mode
	Terse/Verbose Mode
	Syntax Highlighting and Font Options
	Object Views
	History
	Recalling Commands from an Empty Command Line
	Recalling Commands with a Match String

	HiQ/MATLAB Mode

	Command Window Shortcuts
	Optional Trailing Semicolon
	Default Object Assignment
	Multiple Statements and Block Statement Support

	Terminating Commands
	Command Window Commands
	MATLAB Mode Commands
	HiQ Log Window

	Chapter 3 Using HiQ Graphics
	Two-Dimensional Graphs
	Two-Dimensional Graph Features
	Creating a 2D Graph
	Adding a Plot to an Existing 2D Graph
	Creating 2D Plot Objects
	Changing the Data of a 2D Plot
	Creating a Graph and Plot Simultaneously
	Adding Multiple Y Axes to a 2D Graph

	Three-Dimensional Graphs
	Three-Dimensional Graph Features
	Creating a 3D Graph
	Adding a Plot to an Existing 3D Graph
	Creating 3D Plot Objects
	Changing the Data of a 3D Plot
	Creating a Graph and Plot Simultaneously
	Creating 4D Plots
	Interacting with 3D Graphs
	Using Lights
	Using Accelerated OpenGL Graphics Adapters

	Common Graph Operations
	Setting Graph Properties
	Plot Properties
	Contour Properties
	Axis Properties
	Light Properties

	Querying Graph Properties
	Using Auto Scaling
	Using Legends
	Removing Plots

	Chapter 4 HiQ Objects and Object Properties
	HiQ Objects
	Object Creation
	Object Views
	Creating Views
	Deleting Views

	Object Properties
	Default Property Settings
	Changing Properties

	HiQ Object Descriptions
	Numeric Scalar Objects
	Numeric Vector Objects
	Numeric Matrix Objects
	Numeric Polynomial Objects
	Text Objects
	Script Objects
	Color Objects
	Font Objects
	Function Objects
	ActiveX Objects
	ActiveX Control Objects
	ActiveX Interface Objects
	HiQ Constant Objects
	Untyped Objects
	Graph Objects
	Plot Objects

	Chapter 5 HiQ-Script Basics
	HiQ-Script
	Naming Conventions
	Script Objects
	Compiling Your Script
	Running Your Script
	Syntax Highlighting

	Comments
	Expressions
	Assignment Statements
	Numeric Objects
	Creating Numeric Objects
	Initializer Syntax
	Subscripts
	Subranges
	Polynomial Objects
	Type Conversion
	Numeric Constants

	User Functions
	Writing a Function
	Calling a Function
	Structure of a Function
	Return Statement
	User Function Initialization Syntax

	Object Scope
	Flow Control and Looping
	If-Then-Else Statement
	Conditional Expressions
	Select Statement
	For Loop
	While Loop

	Chapter 6 HiQ-Script Reference
	Algebraic Expression
	Algebraic Binary Operators
	Algebraic Unary Operators
	Assignment
	assume
	Color Initialization Operator
	Complex Literal
	Constant
	exit
	Font Initialization Operator
	for
	function
	Function Call
	Function Initialization Operator
	if
	Integer Literal
	local
	Logical Expression
	Logical Binary Operators
	Logical Unary Operators
	Matrix Initialization Operator
	next
	Polynomial Initialization Operator
	Precedence
	project
	Property Operator
	Real Literal
	Relational Operators
	repeat
	repeat forever
	return
	select
	Subrange Operator
	Text Literal
	Vector Initialization Operator
	while

	Chapter 7 Function Reference
	abs
	addPlot
	airy
	arccos
	arccosh
	arccot
	arccoth
	arccsc
	arccsch
	arcsec
	arcsech
	arcsin
	arcsinh
	arctan
	arctanh
	arg
	avgDev
	bandwidth
	basis
	besselI
	besselJ
	besselJs
	besselK
	besselY
	besselYs
	beta
	cbrt
	CDF
	ceil
	changePlotData
	choleskyD
	clearLog
	close
	compose
	cond
	conj
	convert
	cor
	cos
	cosh
	coshI
	cosI
	cot
	coth
	cov
	createGraph
	createInterface
	createMatrix
	createPlot
	createPoly
	createVector
	createView
	cross
	csc
	csch
	curl
	date
	dawson
	degree
	deleteFile
	derivative
	det
	diag
	digamma
	diln
	dim
	dist
	div
	divide
	dot
	eigen
	eigenDom
	eigenSel
	elliptic1
	elliptic2
	ellipticJ
	erf
	erfc
	error
	eval
	evalPoly
	exp
	expI
	export
	fact
	fCosI
	fill
	find
	fit
	fitEval
	floor
	flush
	fPart
	fSinI
	gamma
	gammaC
	gauss
	gcd
	getFileName
	getFilePos
	getFileSize
	getNumber
	getText
	givens
	gradient
	guder
	guderInv
	hessenbergD
	hessian
	histogram
	householder
	ident
	import
	integEqn
	integrate
	interp
	interpEval
	inv
	iPart
	isEOF
	isMatrix
	jacobian
	kelvinI
	kelvinK
	kummer
	kurtosis
	laplacian
	lcm
	ln
	log
	logMessage
	LUD
	max
	mean
	median
	message
	min
	moment
	norm
	ODEBVP
	ODEIVP
	ones
	open
	optimize
	partial
	PDF
	permu
	pinv
	pow
	prod
	putFileName
	QRD
	quartile
	random
	range
	rank
	read
	readLine
	reflect
	remove
	removePlot
	renameFile
	replace
	root
	roots
	rotate
	round
	saveLog
	schurD
	sec
	sech
	seed
	seq
	setFilePos
	sign
	sin
	sinh
	sinhI
	sinI
	skew
	solve
	sort
	sparsity
	spline
	splineEval
	sqrt
	stdDev
	stirling
	struve
	subrange
	sum
	SV
	SVD
	symD
	tan
	tanh
	time
	timer
	toComplex
	toInteger
	toMatrix
	toNumeric
	toReal
	toScalar
	toText
	toVector
	trace
	trans
	tricomi
	updateViews
	vanish
	var
	wait
	warning
	weber
	write
	writeLine
	zeta

	Appendix A HiQ Functions Listed by Category
	Analysis
	File I/O
	Graphics
	Utility

	Appendix B HiQ Constants
	Property Constants
	Language Constants
	Function Constants

	Appendix C Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	HiQ Hardware and Software Configuration�Form
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	A
	B-D
	E-G
	H-K
	L-N
	O-P
	R-S
	T-V
	W

	Index
	Symbols and Numbers
	A
	B-C
	D-E
	F
	G
	H
	I
	J-L
	M-N
	O
	P
	Q
	R-S
	T
	U-W
	Z

	Figures
	Figure 1-1. HiQ ActiveX Object Browser
	Figure 1-2. ActiveX Library References
	Figure 1-3. Microsoft Excel 8.0 Object Library
	Figure 1-4. Microsoft Word Document Embedded in a HiQ Notebook
	Figure 2-1. Command Window Properties
	Figure 5-1. Active Script Object on the Notebook Page
	Figure 5-2. Select Objects»View»All to View Function Objects

	Tables
	Table 1-1. Automation Errors
	Table 2-1. Command Window Commands
	Table 2-2. MATLAB Mode Commands
	Table 3-1. Advantages and Disadvantages of Using 3D Hardware Acceleration
	Table 3-2. Graph Properties
	Table 3-3. Plot Properties
	Table 3-4. Contour Properties
	Table 3-5. Examples: Setting Plot Properties
	Table 3-6. Valid Values for axisType
	Table 3-7. Axis Properties
	Table 3-8. Examples: Setting Axis Properties
	Table 3-9. Light Properties
	Table 3-10. Examples: Setting Light Properties
	Table 4-1. Numeric Scalar Object Properties
	Table 4-2. Numeric Vector Object Properties
	Table 4-3. Numeric Matrix Object Properties
	Table 4-4. Numeric Polynomial Properties
	Table 4-5. Text Object Properties
	Table 4-6. Script Object Properties
	Table 4-7. Color Object Properties
	Table 4-8. Font Object Properties
	Table 4-9. Function Object Properties
	Table 4-10. ActiveX Object Properties
	Table 4-11. ActiveX Control Object Properties
	Table 4-12. ActiveX Interface Object Properties
	Table 4-13. HiQ Constant Object Properties
	Table 4-14. Untyped Object Properties
	Table 4-15. Graph Object Properties
	Table 4-16. Axis Properties
	Table 4-17. Graph Light Properties
	Table 4-18. Plot Object Properties
	Table 4-19. Plot Contour Properties
	Table A-1. Analysis Functions
	Table A-2. File I/O Functions
	Table A-3. Graphics Functions
	Table A-4. Utility Functions
	Table B-1. Object Type Constants
	Table B-2. Border Style Constants
	Table B-3. Plot Style Constants
	Table B-4. Fill Style Constants
	Table B-5. Line Style Constants
	Table B-6. Point Style Constants
	Table B-7. Coordinate System Constants
	Table B-8. Axis Scaling Constants
	Table B-9. Contour Constants
	Table B-10. Projection Style Constants
	Table B-11. View Mode Constants
	Table B-12. Lighting Attenuation Constants
	Table B-13. Color Map Constants
	Table B-14. Line Interpolation Constants
	Table B-15. Numeric Formatting Constants
	Table B-16. Numeric Constants
	Table B-17. Text Constants
	Table B-18. Color Constants
	Table B-19. Function Constants

